A platform for research: civil engineering, architecture and urbanism
CS3: Large Strain Consolidation Model for Layered Soils
A numerical model, called CS3, is presented for one-dimensional, large strain consolidation of layered soils. The algorithm accounts for vertical strain, soil self-weight, conventional constitutive relationships, changing material properties during consolidation, unload/reload, time-dependent loading and boundary conditions, an externally applied hydraulic gradient, and multiple soil layers with different material properties. CS3 can accommodate equilibrium and nonequilibrium profiles for the initial void ratio as well as variable profiles for preconsolidation stress and applied stress increment. Verification checks show excellent agreement with available analytical and numerical solutions. Several numeric examples are used to illustrate the capabilities of CS3 and highlight errors that may occur when multilayer systems are modeled as a single layer with average properties. Finally, settlement estimates obtained using CS3 are in good agreement with field measurements for the Gloucester test fill.
CS3: Large Strain Consolidation Model for Layered Soils
A numerical model, called CS3, is presented for one-dimensional, large strain consolidation of layered soils. The algorithm accounts for vertical strain, soil self-weight, conventional constitutive relationships, changing material properties during consolidation, unload/reload, time-dependent loading and boundary conditions, an externally applied hydraulic gradient, and multiple soil layers with different material properties. CS3 can accommodate equilibrium and nonequilibrium profiles for the initial void ratio as well as variable profiles for preconsolidation stress and applied stress increment. Verification checks show excellent agreement with available analytical and numerical solutions. Several numeric examples are used to illustrate the capabilities of CS3 and highlight errors that may occur when multilayer systems are modeled as a single layer with average properties. Finally, settlement estimates obtained using CS3 are in good agreement with field measurements for the Gloucester test fill.
CS3: Large Strain Consolidation Model for Layered Soils
Fox, Patrick J. (author) / Pu, He-Fu (author) / Berles, James D. (author)
2014-04-28
Article (Journal)
Electronic Resource
Unknown
CS3: Large Strain Consolidation Model for Layered Soils
British Library Online Contents | 2014
|Model for Coupled Large Strain Consolidation and Solute Transport in Layered Soils
Online Contents | 2016
|Model for Coupled Large Strain Consolidation and Solute Transport in Layered Soils
Online Contents | 2015
|Large Strain Consolidation for Elasto-Plastic Soils
British Library Conference Proceedings | 1998
|