A platform for research: civil engineering, architecture and urbanism
A Unique Solution to a Unique Problem: Large-Diameter Pipeline Seismic Retrofit Mitigates Landslide Hazards
The Santa Clara Valley Water District (District) initiated the Penitencia delivery main and penitencia force main seismic retrofit project (Project) to improve the seismic resilience of three critical water supply/delivery pipelines that serve the District’s Penitencia water treatment plant (WTP) in San Jose, California. The most important objective of the project was to retrofit the pipelines to protect the life-safety of nearby residents and the noble elementary school. The Project planning phase began in 2013 and final design was completed in December 2015. Construction is scheduled to start in April 2016 and is scheduled to be complete in December 2017. This project included the following key innovations: design for large landslide displacement: the landslide and seismic hazard evaluation estimated the landslide displacement as 7.7 feet (seismic) and 1.7 feet (creep) for a total displacement of 9.4 feet over the 50-year design life. sophisticated finite element modeling: The project team developed the design with a sophisticated 3-D model of the landslide and pipeline interactions. Full scale testing of joint and collar performance: Kubota Corporation performed a full-scale test of the 60-inch and 72-inch pipelines to verify the maximum rotation and moment capacities. Novel application of earthquake resistant ductile iron pipe: There have been a few pilot project installations of small diameter earthquake resistant ductile iron pipe (ERDIP) in the United States to date; however, the 60-inch, 66-inch, and 72-inch pipelines will be the first large diameter installation of ERDIP in the US. This project is unique because it required designing for a large displacement along the axis of pipelines which load the pipelines in compression. This project also has a high visibility within the community because of the risk of failure and proximity of the project within the residential neighborhood.
A Unique Solution to a Unique Problem: Large-Diameter Pipeline Seismic Retrofit Mitigates Landslide Hazards
The Santa Clara Valley Water District (District) initiated the Penitencia delivery main and penitencia force main seismic retrofit project (Project) to improve the seismic resilience of three critical water supply/delivery pipelines that serve the District’s Penitencia water treatment plant (WTP) in San Jose, California. The most important objective of the project was to retrofit the pipelines to protect the life-safety of nearby residents and the noble elementary school. The Project planning phase began in 2013 and final design was completed in December 2015. Construction is scheduled to start in April 2016 and is scheduled to be complete in December 2017. This project included the following key innovations: design for large landslide displacement: the landslide and seismic hazard evaluation estimated the landslide displacement as 7.7 feet (seismic) and 1.7 feet (creep) for a total displacement of 9.4 feet over the 50-year design life. sophisticated finite element modeling: The project team developed the design with a sophisticated 3-D model of the landslide and pipeline interactions. Full scale testing of joint and collar performance: Kubota Corporation performed a full-scale test of the 60-inch and 72-inch pipelines to verify the maximum rotation and moment capacities. Novel application of earthquake resistant ductile iron pipe: There have been a few pilot project installations of small diameter earthquake resistant ductile iron pipe (ERDIP) in the United States to date; however, the 60-inch, 66-inch, and 72-inch pipelines will be the first large diameter installation of ERDIP in the US. This project is unique because it required designing for a large displacement along the axis of pipelines which load the pipelines in compression. This project also has a high visibility within the community because of the risk of failure and proximity of the project within the residential neighborhood.
A Unique Solution to a Unique Problem: Large-Diameter Pipeline Seismic Retrofit Mitigates Landslide Hazards
Baune, Darren (author)
Pipelines 2016 ; 2016 ; Kansas City, Missouri
Pipelines 2016 ; 1887-1898
2016-07-11
Conference paper
Electronic Resource
English
Unique solution for difficult rigging problem
Engineering Index Backfile | 1969
|Unique Solution for Difficult Rigging Problem
ASCE | 2021
|