A platform for research: civil engineering, architecture and urbanism
Numerical Modeling of Columnar-Reinforced Ground Behavior during Dynamic Centrifuge Testing
Predicting the response of soil profiles during earthquakes is one of the major challenges in geotechnical earthquake engineering. The presence of reinforcing elements such as stiff columns adds further complexity to the problem due to the interaction of these stiff elements with the surrounding ground. This research presents the results of advanced numerical simulations of dynamic centrifuge tests performed on a columnar reinforced model with a loose sandy profile. The model was subjected to earthquake base motions of varying intensities to investigate the reinforcing mechanisms of soil-cement columns. Numerical simulations were performed using the finite element computational platform OpenSees with pressure dependent multi yield (PDMY02) constitutive model. Simulated and measured values were compared for seismic intensity, excess pore water pressure and ground settlement at different locations within soil profile. The calibrated numerical model was able to realistically predict the response of reinforced ground.
Numerical Modeling of Columnar-Reinforced Ground Behavior during Dynamic Centrifuge Testing
Predicting the response of soil profiles during earthquakes is one of the major challenges in geotechnical earthquake engineering. The presence of reinforcing elements such as stiff columns adds further complexity to the problem due to the interaction of these stiff elements with the surrounding ground. This research presents the results of advanced numerical simulations of dynamic centrifuge tests performed on a columnar reinforced model with a loose sandy profile. The model was subjected to earthquake base motions of varying intensities to investigate the reinforcing mechanisms of soil-cement columns. Numerical simulations were performed using the finite element computational platform OpenSees with pressure dependent multi yield (PDMY02) constitutive model. Simulated and measured values were compared for seismic intensity, excess pore water pressure and ground settlement at different locations within soil profile. The calibrated numerical model was able to realistically predict the response of reinforced ground.
Numerical Modeling of Columnar-Reinforced Ground Behavior during Dynamic Centrifuge Testing
Kamalzare, Soheil (author) / Olgun, C. Guney (author)
Geotechnical Frontiers 2017 ; 2017 ; Orlando, Florida
Geotechnical Frontiers 2017 ; 39-48
2017-03-30
Conference paper
Electronic Resource
English
Numerical Modeling of Columnar-Reinforced Ground Behavior during Dynamic Centrifuge Testing
British Library Conference Proceedings | 2017
|Numerical Modeling of the Seismic Response of Columnar Reinforced Ground
British Library Conference Proceedings | 2008
|Numerical Modeling of Columnar Reinforced Ground 1999 Kocaeli Earthquake Case History
British Library Conference Proceedings | 2008
|Dynamic behavior of reinforced concrete pile foundation on sand deposits using centrifuge modeling
British Library Conference Proceedings | 2001
|