A platform for research: civil engineering, architecture and urbanism
Finite-Element Modeling of Prestressed Cold-Formed Steel Beams
The concept and structural benefits of prestressing cold-formed steel beams are explored in the present paper. In the proposed system, prestressing is applied by means of a high-strength steel cable located within the cross section of the beam at an eccentric location with respect to the strong geometric axis. The internal forces generated by the prestressing are opposite in sign to those induced under subsequent vertical loading. Hence, the development of detrimental compressive stresses within the top region of the cold-formed steel beam is delayed and thus the load-carrying capacity of the beam is enhanced. Owing to the precamber that is induced along the member during the prestressing stage, the overall deflections of the beam are also reduced significantly. In the present paper, finite-element (FE) modeling was employed to simulate the mechanical behavior of prestressed cold-formed steel beams during the prestressing and vertical loading stages. Following the validation of the FE modeling approach, a set of parametric studies was conducted, where the influence of the key controlling parameters on the structural benefits obtained from the prestressing process was investigated. The parametric results were utilized to determine how the benefits obtained from the addition of the prestressed cable can be maximized, demonstrating the significant enhancements in the performance of the cold-formed steel beam that can be achieved.
Finite-Element Modeling of Prestressed Cold-Formed Steel Beams
The concept and structural benefits of prestressing cold-formed steel beams are explored in the present paper. In the proposed system, prestressing is applied by means of a high-strength steel cable located within the cross section of the beam at an eccentric location with respect to the strong geometric axis. The internal forces generated by the prestressing are opposite in sign to those induced under subsequent vertical loading. Hence, the development of detrimental compressive stresses within the top region of the cold-formed steel beam is delayed and thus the load-carrying capacity of the beam is enhanced. Owing to the precamber that is induced along the member during the prestressing stage, the overall deflections of the beam are also reduced significantly. In the present paper, finite-element (FE) modeling was employed to simulate the mechanical behavior of prestressed cold-formed steel beams during the prestressing and vertical loading stages. Following the validation of the FE modeling approach, a set of parametric studies was conducted, where the influence of the key controlling parameters on the structural benefits obtained from the prestressing process was investigated. The parametric results were utilized to determine how the benefits obtained from the addition of the prestressed cable can be maximized, demonstrating the significant enhancements in the performance of the cold-formed steel beam that can be achieved.
Finite-Element Modeling of Prestressed Cold-Formed Steel Beams
Hadjipantelis, Nicolas (author) / Gardner, Leroy (author) / Wadee, M. Ahmer (author)
2019-07-26
Article (Journal)
Electronic Resource
Unknown
Finite element modeling of prestressed concrete spandrel beams
Online Contents | 2010
|Accurate finite element modeling of pretensioned prestressed concrete beams
Online Contents | 2015
|Nonlinear Analysis of Prestressed Cold-Formed U-Shaped Steel and Concrete Composite Beams
Trans Tech Publications | 2012
|