A platform for research: civil engineering, architecture and urbanism
Improved Particle Swarm Optimization–Based Artificial Neural Network for Rainfall-Runoff Modeling
This paper presents the application of an improved particle swarm optimization (PSO) technique for training an artificial neural network (ANN) to predict water levels for the Heshui Watershed, China. Daily values of rainfall and water levels from 1988 to 2000 were first analyzed using ANNs trained with the conjugate gradient, gradient descent, and Levenberg-Marquardt neural network (LM-NN) algorithms. The best results were obtained from the LM-NN, and these results were then compared with those from PSO-based ANNs, including the conventional PSO neural network (CPSONN) and the improved PSO neural network (IPSONN) with passive congregation. The IPSONN algorithm improves PSO convergence by using the selfish herd concept in swarm behavior. The results show that the PSO-based ANNs performed better than the LM-NN. For models run using a single parameter (rainfall) as input, the root mean square error (RMSE) of the testing data set for IPSONN was the lowest (0.152 m) compared to those for CPSONN (0.161 m) and LM-NN (0.205 m). For multiparameter (rainfall and water level) inputs, the RMSE of the testing data set for IPSONN was also the lowest (0.089 m) compared to those for CPSONN (0.105 m) and LM-NN (0.145 m). The results also indicate that the LM-NN model performed poorly in predicting the low and peak water levels in comparison to the PSO-based ANNs. Moreover, the IPSONN model was superior to CPSONN in predicting extreme water levels. Lastly, IPSONN had a quicker convergence rate compared to CPSONN.
Improved Particle Swarm Optimization–Based Artificial Neural Network for Rainfall-Runoff Modeling
This paper presents the application of an improved particle swarm optimization (PSO) technique for training an artificial neural network (ANN) to predict water levels for the Heshui Watershed, China. Daily values of rainfall and water levels from 1988 to 2000 were first analyzed using ANNs trained with the conjugate gradient, gradient descent, and Levenberg-Marquardt neural network (LM-NN) algorithms. The best results were obtained from the LM-NN, and these results were then compared with those from PSO-based ANNs, including the conventional PSO neural network (CPSONN) and the improved PSO neural network (IPSONN) with passive congregation. The IPSONN algorithm improves PSO convergence by using the selfish herd concept in swarm behavior. The results show that the PSO-based ANNs performed better than the LM-NN. For models run using a single parameter (rainfall) as input, the root mean square error (RMSE) of the testing data set for IPSONN was the lowest (0.152 m) compared to those for CPSONN (0.161 m) and LM-NN (0.205 m). For multiparameter (rainfall and water level) inputs, the RMSE of the testing data set for IPSONN was also the lowest (0.089 m) compared to those for CPSONN (0.105 m) and LM-NN (0.145 m). The results also indicate that the LM-NN model performed poorly in predicting the low and peak water levels in comparison to the PSO-based ANNs. Moreover, the IPSONN model was superior to CPSONN in predicting extreme water levels. Lastly, IPSONN had a quicker convergence rate compared to CPSONN.
Improved Particle Swarm Optimization–Based Artificial Neural Network for Rainfall-Runoff Modeling
Asadnia, Mohsen (author) / Chua, Lloyd H. C. (author) / Qin, X. S. (author) / Talei, Amin (author)
Journal of Hydrologic Engineering ; 19 ; 1320-1329
2013-10-24
102013-01-01 pages
Article (Journal)
Electronic Resource
Unknown
Improved Particle Swarm Optimization-Based Artificial Neural Network for Rainfall-Runoff Modeling
British Library Online Contents | 2014
|