A platform for research: civil engineering, architecture and urbanism
Traffic Condition Uncertainty Quantification under Nonnormal Distributions
Uncertainty quantification is important for making reliable decisions in transportation planning and operations. In the field of short-term traffic condition forecasting, uncertainty quantification methods include primarily distribution-based approaches and nondistribution-based approaches. For the former, the generalized autoregressive conditional heteroscedasticity (GARCH) model has been widely applied to model and quantify traffic condition uncertainty in terms of prediction interval under normality assumption. However, this normality assumption has not been systematically investigated yet. Therefore, this paper attempts to investigate this normality assumption and thereby quantify traffic condition uncertainty, using a method with steps of residual calculation and investigation, normality investigation, distribution estimation, uncertainty quantification, and performance measurement. Using real-world traffic flow data, the distributions of the selected samples are shown to be nonnormal using the Kolmogorov-Smirnov test and normal probability plot. Distribution estimation using nonnormal models shows that the t location-scale distribution and generalized error distribution (GED) can be used to model traffic condition uncertainty. Uncertainty quantification using GARCH under these nonnormal distributions further show that nonnormal models outperform the normal model, with the GARCH model under t location-scale distribution yielding the best performance. Future studies are recommended to promote the investigation into traffic condition uncertainty quantification and application.
Traffic Condition Uncertainty Quantification under Nonnormal Distributions
Uncertainty quantification is important for making reliable decisions in transportation planning and operations. In the field of short-term traffic condition forecasting, uncertainty quantification methods include primarily distribution-based approaches and nondistribution-based approaches. For the former, the generalized autoregressive conditional heteroscedasticity (GARCH) model has been widely applied to model and quantify traffic condition uncertainty in terms of prediction interval under normality assumption. However, this normality assumption has not been systematically investigated yet. Therefore, this paper attempts to investigate this normality assumption and thereby quantify traffic condition uncertainty, using a method with steps of residual calculation and investigation, normality investigation, distribution estimation, uncertainty quantification, and performance measurement. Using real-world traffic flow data, the distributions of the selected samples are shown to be nonnormal using the Kolmogorov-Smirnov test and normal probability plot. Distribution estimation using nonnormal models shows that the t location-scale distribution and generalized error distribution (GED) can be used to model traffic condition uncertainty. Uncertainty quantification using GARCH under these nonnormal distributions further show that nonnormal models outperform the normal model, with the GARCH model under t location-scale distribution yielding the best performance. Future studies are recommended to promote the investigation into traffic condition uncertainty quantification and application.
Traffic Condition Uncertainty Quantification under Nonnormal Distributions
J. Transp. Eng., Part A: Systems
Li, Meiye (author) / Fang, Lue (author) / Jia, Wenwen (author) / Guo, Jianhua (author)
2022-10-01
Article (Journal)
Electronic Resource
English
Effects of Nonnormal Distributions on Highway Construction Acceptance Pay Factor Calculation
Online Contents | 2011
|Effects of Nonnormal Distributions on Highway Construction Acceptance Pay Factor Calculation
British Library Online Contents | 2011
|Structural Equation Models and Mixture Models With Continuous Nonnormal Skewed Distributions
British Library Online Contents | 2016
|Using Monte Carlo Normal Distributions to Evaluate Structural Models With Nonnormal Data
British Library Online Contents | 2018
|Justification of a Malyshev-Type Formula in the Nonnormal Case
British Library Online Contents | 2005
|