A platform for research: civil engineering, architecture and urbanism
River-Flow Forecasting Using Higher-Order Neural Networks
In this paper, we propose a novel neural modeling methodology for forecasting daily river discharge that makes use of neural units with higher-order synaptic operations (NU-HSOs). For hydrologic forecasting, conventional rainfall-runoff models based on mechanistic approaches in the literature have shown limitations attributable to their overparameterization and complexity. With the use of neural units with quadratic synaptic operation (NU-QSO) and cubic synaptic operation (NU-CSO), as suggested in this paper, the refined neural modeling methodology can overcome the intricacy and inefficiency of conventional models. In this paper, neural network (NN) models with NU-HSO are compared with conventional NNs with neural units with linear synaptic operation (NU-LSO) for forecasting river discharge. This study was conducted using 1- to 5-day lead time forecasting in the Mahanadi River basin at the Naraj gauging site to evaluate the effectiveness of the higher-order neural networks (HO-NNs). Performance indices for the prediction of daily discharge forecasting indicated that NNs with NU-CSO and NNs with NU-QSO achieved better performance than NNs with NU-LSO even with a lower number of hidden neurons. Thus, this study shows that HO-NNs can be effective in hydrologic forecasting.
River-Flow Forecasting Using Higher-Order Neural Networks
In this paper, we propose a novel neural modeling methodology for forecasting daily river discharge that makes use of neural units with higher-order synaptic operations (NU-HSOs). For hydrologic forecasting, conventional rainfall-runoff models based on mechanistic approaches in the literature have shown limitations attributable to their overparameterization and complexity. With the use of neural units with quadratic synaptic operation (NU-QSO) and cubic synaptic operation (NU-CSO), as suggested in this paper, the refined neural modeling methodology can overcome the intricacy and inefficiency of conventional models. In this paper, neural network (NN) models with NU-HSO are compared with conventional NNs with neural units with linear synaptic operation (NU-LSO) for forecasting river discharge. This study was conducted using 1- to 5-day lead time forecasting in the Mahanadi River basin at the Naraj gauging site to evaluate the effectiveness of the higher-order neural networks (HO-NNs). Performance indices for the prediction of daily discharge forecasting indicated that NNs with NU-CSO and NNs with NU-QSO achieved better performance than NNs with NU-LSO even with a lower number of hidden neurons. Thus, this study shows that HO-NNs can be effective in hydrologic forecasting.
River-Flow Forecasting Using Higher-Order Neural Networks
Tiwari, Mukesh K. (author) / Song, Ki-Young (author) / Chatterjee, Chandranath (author) / Gupta, Madan M. (author)
Journal of Hydrologic Engineering ; 17 ; 655-666
2011-08-06
122012-01-01 pages
Article (Journal)
Electronic Resource
English
River-Flow Forecasting Using Higher-Order Neural Networks
British Library Online Contents | 2012
|River-Flow Forecasting Using Higher-Order Neural Networks
Online Contents | 2012
|River flow forecasting using artificial neural networks
British Library Conference Proceedings | 2004
|Intermittent river flow forecasting by artificial neural networks
British Library Conference Proceedings | 2002
|River Stage Forecasting Using Artificial Neural Networks
Online Contents | 1998
|