A platform for research: civil engineering, architecture and urbanism
Bridge Scour and Sediment Analysis for River Restoration Projects
Scour analysis is a critical part of many river restoration and rehabilitation projects located in the vicinity of existing bridges, retaining walls, and subsurface utility infrastructure. The removal of grade control systems, fish passage barriers, and abandoned or unsafe dams may result in altering riverbed stability or creating upstream headcuts that could influence bridges. Other types of physical restoration projects to renaturalize rivers may alter bed gradients, revise channel alignment, change flow velocities, or modify sediment transport. Careful hydraulic studies are required to assess the potential for short-term scour and long-term degradation or aggradation. Traditional methods developed for the design and evaluation of transportation bridges such as Federal Highway Administration guidelines (HEC-18) are also applied at restoration sites. However, there has been concern about erratic scour depth predictions, so supplemental techniques should be used to check results. They include use of U.S. Geological Survey bridge scour field data, regional performance of similar bridges and substrates, and sediment transport models. Immediately following Hurricane Irene, post disaster river restoration assistance included inspecting 50 bridges in three states, leading to 12 closures largely due to scour and sediment problems. Several interesting cases were assessed, including a dam removal situation, a braided channel, and aggradation at bridges.
Bridge Scour and Sediment Analysis for River Restoration Projects
Scour analysis is a critical part of many river restoration and rehabilitation projects located in the vicinity of existing bridges, retaining walls, and subsurface utility infrastructure. The removal of grade control systems, fish passage barriers, and abandoned or unsafe dams may result in altering riverbed stability or creating upstream headcuts that could influence bridges. Other types of physical restoration projects to renaturalize rivers may alter bed gradients, revise channel alignment, change flow velocities, or modify sediment transport. Careful hydraulic studies are required to assess the potential for short-term scour and long-term degradation or aggradation. Traditional methods developed for the design and evaluation of transportation bridges such as Federal Highway Administration guidelines (HEC-18) are also applied at restoration sites. However, there has been concern about erratic scour depth predictions, so supplemental techniques should be used to check results. They include use of U.S. Geological Survey bridge scour field data, regional performance of similar bridges and substrates, and sediment transport models. Immediately following Hurricane Irene, post disaster river restoration assistance included inspecting 50 bridges in three states, leading to 12 closures largely due to scour and sediment problems. Several interesting cases were assessed, including a dam removal situation, a braided channel, and aggradation at bridges.
Bridge Scour and Sediment Analysis for River Restoration Projects
MacBroom, James G. (author)
World Environmental And Water Resources Congress 2012 ; 2012 ; Albuquerque, New Mexico, United States
2012-05-17
Conference paper
Electronic Resource
English
Bridge Scour and Sediment Analysis for River Restoration Projects
British Library Conference Proceedings | 2012
|Scour Vulnerability of River Bridge Piers
British Library Online Contents | 2003
|River bed scour at bridge abutments
British Library Conference Proceedings | 1996
|Scour Vulnerability of River Bridge Piers
Online Contents | 2003
|