A platform for research: civil engineering, architecture and urbanism
Energy Storage Technologies for Residential Buildings
Residential buildings are mostly sensitive to climatic conditions; building envelopes work as the interface between indoor and outdoor environments, preventing heat gain in the summer and heat loss in the winter. Proper use of energy storage technologies may reduce greatly the energy needs in residential dwellings while delivering better indoor environment quality. This paper provides a brief review of several energy storage technologies, both active and passive, for residential building applications. Particular attention is paid to the usage of phase change materials (PCMs), which have been studied for a few decades with a recent growing interest. Modeling methods of PCM-embedded wall systems are reviewed comparatively and a new simulation program is developed that can simulate the thermal and energy performance of PCM-embedded walls and buildings in a more stable and fast manner. The paper also presents a case study that integrates PCM with the traditional kang heating system for the residential dwellings in northeastern rural China. Both technical and economic performances of the solution are explored.
Energy Storage Technologies for Residential Buildings
Residential buildings are mostly sensitive to climatic conditions; building envelopes work as the interface between indoor and outdoor environments, preventing heat gain in the summer and heat loss in the winter. Proper use of energy storage technologies may reduce greatly the energy needs in residential dwellings while delivering better indoor environment quality. This paper provides a brief review of several energy storage technologies, both active and passive, for residential building applications. Particular attention is paid to the usage of phase change materials (PCMs), which have been studied for a few decades with a recent growing interest. Modeling methods of PCM-embedded wall systems are reviewed comparatively and a new simulation program is developed that can simulate the thermal and energy performance of PCM-embedded walls and buildings in a more stable and fast manner. The paper also presents a case study that integrates PCM with the traditional kang heating system for the residential dwellings in northeastern rural China. Both technical and economic performances of the solution are explored.
Energy Storage Technologies for Residential Buildings
Zhai, Zhiqiang (John) (author) / Abarr, Miles L. L. (author) / Al-Saadi, Saleh N. J. (author) / Yate, Porter (author)
2014-08-18
Article (Journal)
Electronic Resource
Unknown
Energy Storage Technologies for Residential Buildings
British Library Online Contents | 2014
|Energy saving and storage in residential buildings
TIBKAT | 2012
|Energy conversion and storage processes for zero-energy residential buildings
British Library Conference Proceedings | 1993
|