A platform for research: civil engineering, architecture and urbanism
Seismic Reliability–Based Multiobjective Design of Water Distribution System: Sensitivity Analysis
This study proposes a seismic reliability–based water distribution system (WDS) optimal design model that minimizes total cost and maximizes seismic reliability. Here, seismic reliability is defined as the ratio of the available quantity of water to the required demand under stochastic earthquake events. A new evaluation model is used to assess seismic reliability, while a multiobjective harmony search (MOHS) based on a ranking approach is used for optimization. The Anytown network was modified for the demonstration of the proposed method. First, this study performs the sensitivity analysis of MOHS parameter values [i.e., harmony search consideration rate (HMCR) and pitch adjustment rate (PAR)] to identify the best parameter set in a pipe-sizing problem of an Anytown network. Then, Pareto optimal solutions with three different tank configurations are obtained and compared with respect to the final Pareto fronts and the system designs. For the sensitivity analysis, it reveals that higher PAR and lower HMCR values are also required to maintain high searchability in a multiobjective (MO) framework. In addition, Pareto-optimal solutions found for networks with tanks dominated those found for those without tanks.
Seismic Reliability–Based Multiobjective Design of Water Distribution System: Sensitivity Analysis
This study proposes a seismic reliability–based water distribution system (WDS) optimal design model that minimizes total cost and maximizes seismic reliability. Here, seismic reliability is defined as the ratio of the available quantity of water to the required demand under stochastic earthquake events. A new evaluation model is used to assess seismic reliability, while a multiobjective harmony search (MOHS) based on a ranking approach is used for optimization. The Anytown network was modified for the demonstration of the proposed method. First, this study performs the sensitivity analysis of MOHS parameter values [i.e., harmony search consideration rate (HMCR) and pitch adjustment rate (PAR)] to identify the best parameter set in a pipe-sizing problem of an Anytown network. Then, Pareto optimal solutions with three different tank configurations are obtained and compared with respect to the final Pareto fronts and the system designs. For the sensitivity analysis, it reveals that higher PAR and lower HMCR values are also required to maintain high searchability in a multiobjective (MO) framework. In addition, Pareto-optimal solutions found for networks with tanks dominated those found for those without tanks.
Seismic Reliability–Based Multiobjective Design of Water Distribution System: Sensitivity Analysis
Yoo, Do Guen (author) / Jung, Donghwi (author) / Kang, Doosun (author) / Kim, Joong Hoon (author)
2016-10-18
Article (Journal)
Electronic Resource
Unknown
Seismic Reliability–Based Multiobjective Design of Water Distribution System: Sensitivity Analysis
Online Contents | 2016
|Seismic Reliability—Based Multiobjective Design of Water Distribution System: Sensitivity Analysis
British Library Online Contents | 2017
|Seismic Reliability–Based Multiobjective Design of Water Distribution System: Sensitivity Analysis
Online Contents | 2017
|British Library Online Contents | 2012
|