A platform for research: civil engineering, architecture and urbanism
One-Dimensional Equations of Open-Channel Flow
One-dimensional equations of continuity, momentum, and energy for unsteady, spatially varied flow in a fixed-bed open channel of arbitrary configuration are derived from the point forms of the corresponding hydrodynamic equations by integrating the latter over a deforming region of space comprising a slice of differential thickness across the flow with a top always coincident with the fluctuating water surface. To bring the equations to the form of Saint Venant in fixed and accelerating reference frames, departures from hydrostatic pressure conditions in a cross section due to lateral acceleration, viscous deformation, and turbulent Reynolds stresses are reproduced exactly; the rate of energy dissipation in a cross section is uniquely related to wall shear over the wetted perimeter; the term accounting for lateral discharge depends upon its nature; bulk outflow is considered.
One-Dimensional Equations of Open-Channel Flow
One-dimensional equations of continuity, momentum, and energy for unsteady, spatially varied flow in a fixed-bed open channel of arbitrary configuration are derived from the point forms of the corresponding hydrodynamic equations by integrating the latter over a deforming region of space comprising a slice of differential thickness across the flow with a top always coincident with the fluctuating water surface. To bring the equations to the form of Saint Venant in fixed and accelerating reference frames, departures from hydrostatic pressure conditions in a cross section due to lateral acceleration, viscous deformation, and turbulent Reynolds stresses are reproduced exactly; the rate of energy dissipation in a cross section is uniquely related to wall shear over the wetted perimeter; the term accounting for lateral discharge depends upon its nature; bulk outflow is considered.
One-Dimensional Equations of Open-Channel Flow
Strelkoff, Theodor S. (author)
Journal of the Hydraulics Division ; 95 ; 861-876
2021-01-01
161969-01-01 pages
Article (Journal)
Electronic Resource
Unknown
One-dimensional equations of open-channel flow
Engineering Index Backfile | 1969
|Springer Verlag | 2009
|