A platform for research: civil engineering, architecture and urbanism
Dynamic Effect of Bidirectional Crowd Behavior on Footbridges Considering Human–Structure Interaction
This study employed an enhanced social force model to investigate the impact of bidirectional crowd load on the vertical vibration characteristics of pedestrian bridges. The research incorporated a two-step prejudgment approach to optimize agents’ transcendental behavior and introduced a fan-shaped pedestrian perception area for bidirectional crowd movement simulation based on the social force model. The structural vibration response resulting from the evolution of these behaviors was numerically simulated and analyzed. Vertical crowd–structure coupling models were established using a pedestrian moving dynamics model with spring, mass, and damping. A real-time solution method for the structural acceleration response, varying with the moving pedestrian load entering the footbridge deck, was implemented in a numerical environment. Subsequently, the structural response under crowd load, considering multiple behavioral factors, was investigated on an interior steel footbridge. The results demonstrated that bidirectional crowd load generates a higher vertical acceleration response than unidirectional crowd load under the same pedestrian density conditions. The vertical peak acceleration reached its maximum when the number of left- and right-oriented pedestrians was the same, while the peak acceleration of the structure decreased as the difference between the left- and right-oriented pedestrian numbers increased, both in steady-state and transient-state conditions. Bidirectional crowd load poses a higher risk of inducing severe potential vertical resonance of the structure due to synchronization issues, highlighting its significance in the operation of the footbridge.
Dynamic Effect of Bidirectional Crowd Behavior on Footbridges Considering Human–Structure Interaction
This study employed an enhanced social force model to investigate the impact of bidirectional crowd load on the vertical vibration characteristics of pedestrian bridges. The research incorporated a two-step prejudgment approach to optimize agents’ transcendental behavior and introduced a fan-shaped pedestrian perception area for bidirectional crowd movement simulation based on the social force model. The structural vibration response resulting from the evolution of these behaviors was numerically simulated and analyzed. Vertical crowd–structure coupling models were established using a pedestrian moving dynamics model with spring, mass, and damping. A real-time solution method for the structural acceleration response, varying with the moving pedestrian load entering the footbridge deck, was implemented in a numerical environment. Subsequently, the structural response under crowd load, considering multiple behavioral factors, was investigated on an interior steel footbridge. The results demonstrated that bidirectional crowd load generates a higher vertical acceleration response than unidirectional crowd load under the same pedestrian density conditions. The vertical peak acceleration reached its maximum when the number of left- and right-oriented pedestrians was the same, while the peak acceleration of the structure decreased as the difference between the left- and right-oriented pedestrian numbers increased, both in steady-state and transient-state conditions. Bidirectional crowd load poses a higher risk of inducing severe potential vertical resonance of the structure due to synchronization issues, highlighting its significance in the operation of the footbridge.
Dynamic Effect of Bidirectional Crowd Behavior on Footbridges Considering Human–Structure Interaction
J. Bridge Eng.
Zhang, Xiwang (author) / Yang, Wenbin (author) / Zhu, Qiankun (author) / Chen, Zhengqing (author)
2025-01-01
Article (Journal)
Electronic Resource
English
Crowd dynamic loading on footbridges
British Library Conference Proceedings | 2009
|Lateral Vibration of Footbridges under Crowd-Loading: Continuous Crowd Modeling Approach
British Library Online Contents | 2007
|Wiley | 2019
|Dynamic Interaction of Pedestrians and Footbridges
British Library Conference Proceedings | 2009
|