A platform for research: civil engineering, architecture and urbanism
Research on the Dielectric Properties of Asphalt Concrete Based on Equivalent Circuit Modeling
The nondestructive testing of asphalt pavement using ground-penetrating radar (GPR) is based on studies on the dielectric properties of asphalt concrete. The equivalent circuit concept was used in this study, where different mediums are equivalent to a single multilayer medium. The capacitance of each layer medium was used to derive the composite dielectric constant. Using the open coaxial probe method, the dielectric constants of AC-13 and AC-16 concrete composed of No. 70, No. 90, and styrene-butadiene-styrene (SBS)–modified asphalt binder were measured. The results reveal that the dielectric constant of asphalt concrete falls as the binder-aggregate ratio increases, and the change in aggregate volume ratio is the most important element in determining its dielectric constant. For every 1% increase in the binder-aggregate ratio, the dielectric constant of asphalt concrete typically decreases by 0.094, while the volume ratio of asphalt binder increases by 1.39%. In addition, the volume ratios of aggregate and air decreased by 1.05% and 0.33%, respectively. When it comes to estimating the dielectric constant of asphalt concrete, the developed model outperforms the conventional dielectric model with an average relative error of roughly 1%. This model successfully improved the prediction accuracy of the dielectric properties of asphalt concrete materials, which is significant for GPR-based asphalt pavement quality assessment.
Research on the Dielectric Properties of Asphalt Concrete Based on Equivalent Circuit Modeling
The nondestructive testing of asphalt pavement using ground-penetrating radar (GPR) is based on studies on the dielectric properties of asphalt concrete. The equivalent circuit concept was used in this study, where different mediums are equivalent to a single multilayer medium. The capacitance of each layer medium was used to derive the composite dielectric constant. Using the open coaxial probe method, the dielectric constants of AC-13 and AC-16 concrete composed of No. 70, No. 90, and styrene-butadiene-styrene (SBS)–modified asphalt binder were measured. The results reveal that the dielectric constant of asphalt concrete falls as the binder-aggregate ratio increases, and the change in aggregate volume ratio is the most important element in determining its dielectric constant. For every 1% increase in the binder-aggregate ratio, the dielectric constant of asphalt concrete typically decreases by 0.094, while the volume ratio of asphalt binder increases by 1.39%. In addition, the volume ratios of aggregate and air decreased by 1.05% and 0.33%, respectively. When it comes to estimating the dielectric constant of asphalt concrete, the developed model outperforms the conventional dielectric model with an average relative error of roughly 1%. This model successfully improved the prediction accuracy of the dielectric properties of asphalt concrete materials, which is significant for GPR-based asphalt pavement quality assessment.
Research on the Dielectric Properties of Asphalt Concrete Based on Equivalent Circuit Modeling
J. Mater. Civ. Eng.
Zhong, Yanhui (author) / Wang, Yilong (author) / Zhang, Bei (author)
2024-10-01
Article (Journal)
Electronic Resource
English
Experimental Research on Dielectric Constant Model for Asphalt Concrete Material
Trans Tech Publications | 2011
|Experimental Research on Dielectric Constant Model for Asphalt Concrete Material
British Library Conference Proceedings | 2011
|UB Braunschweig | 2009
|TIBKAT | 2009
|