A platform for research: civil engineering, architecture and urbanism
Understanding the Size-Specific Reactive Potential and Dissolution Characteristics of Linz–Donawitz Slag
The utilization of Linz–Donawitz (LD) slag in cementitious applications has gained traction due to its widespread availability, offering a potential solution to reduce global warming. This study evaluates the impact of particle size fractions on the chemical, mineralogical, and dissolution characteristics of LD slag. Nine particle size fractions were analyzed, revealing significant variations in oxide content based on particle size. While CaO, , and contents remain similar in higher ( and ) and lower () size fractions, particles between to exhibit a 1.5% free lime content. Quantification using XRD-based Rietveld refinement indicates LD slag primarily consists of crystalline phases (quartz, calcite, portlandite, brownmillerite, wustite, and belite) alongside an amorphous phase, with amorphous content ranging from 40% to 60% across all sizes. The size fraction exhibits the highest belite, brownmillerite, and wustite content, with comparatively lower free lime content than other size fractions. Dissolution analysis in an alkaline environment shows a slightly improved dissolution behavior with decreasing particle size from to . Calcium exhibits higher initial dissolution rates than iron and silicon within the first three hours, with silicon becoming more prominent after twelve hours. Overall, this study offers a comprehensive analysis of the correlation between particle size and chemical/mineralogical composition, highlighting the potential for converting industrial waste into ecofriendly products.
Understanding the Size-Specific Reactive Potential and Dissolution Characteristics of Linz–Donawitz Slag
The utilization of Linz–Donawitz (LD) slag in cementitious applications has gained traction due to its widespread availability, offering a potential solution to reduce global warming. This study evaluates the impact of particle size fractions on the chemical, mineralogical, and dissolution characteristics of LD slag. Nine particle size fractions were analyzed, revealing significant variations in oxide content based on particle size. While CaO, , and contents remain similar in higher ( and ) and lower () size fractions, particles between to exhibit a 1.5% free lime content. Quantification using XRD-based Rietveld refinement indicates LD slag primarily consists of crystalline phases (quartz, calcite, portlandite, brownmillerite, wustite, and belite) alongside an amorphous phase, with amorphous content ranging from 40% to 60% across all sizes. The size fraction exhibits the highest belite, brownmillerite, and wustite content, with comparatively lower free lime content than other size fractions. Dissolution analysis in an alkaline environment shows a slightly improved dissolution behavior with decreasing particle size from to . Calcium exhibits higher initial dissolution rates than iron and silicon within the first three hours, with silicon becoming more prominent after twelve hours. Overall, this study offers a comprehensive analysis of the correlation between particle size and chemical/mineralogical composition, highlighting the potential for converting industrial waste into ecofriendly products.
Understanding the Size-Specific Reactive Potential and Dissolution Characteristics of Linz–Donawitz Slag
J. Mater. Civ. Eng.
Bhagath Singh, G. V. P. (author)
2025-01-01
Article (Journal)
Electronic Resource
English
Experimental investigation of asphalt mixture containing Linz-Donawitz steel slag
DOAJ | 2017
|Influence of Linz Donawitz slag aggregates on strength development of concrete
Springer Verlag | 2019
|