A platform for research: civil engineering, architecture and urbanism
Exploration of the Trade-Offs between Water Quality and Pumping Costs in Optimal Operation of Regional Multiquality Water Distribution Systems
This paper explores the trade-offs between water quality and pumping costs objectives in optimization of operation of regional multiquality water distribution systems. The optimization model is designed to concurrently minimize each objective, where water quality is represented by the deviations of constituent concentrations from required values and pumping costs are represented by energy consumed by the pumps. The optimization problem is solved using an optimization software, incorporating the nondominated sorting genetic algorithm II (NSGA-II), linked with network analysis software. Two typical but purposefully different example networks are used. First, a network with multiple water sources of different qualities and second, a network with one water source only, which was converted to represent a regional nondrinking water distribution system. The trade-offs between water quality and pumping costs are explored using a total of 14 scenarios reflecting different water quality configurations of these networks. Those scenarios, into which time variability was introduced for both source water quality and customer water quality requirements, were systematically developed to represent real-life situations that could be found in practice. The results indicate that for the majority of the scenarios, there is a trade-off with a competing nature between water quality and pumping costs objectives. Additionally, it was discovered that multiobjective optimization problems with water quality (i.e., concentration deviations) and pumping costs objectives could be reduced in certain instances into a single-objective problem of minimizing pumping costs. In fact, a regional water distribution system in which water quality is represented by a single conservative constituent can produce either a trade-off or single-objective solution between those two objectives, and this outcome is dependent on both the water quality configuration of the system and system operational flexibility. Last, some particular conclusions are drawn for both a water distribution system with multiple water sources and a water distribution system with a single water source, which suggest how changes in source water qualities or customer water quality requirements may impact system operation. It is, therefore, demonstrated that water utilities which operate regional multiquality nondrinking water distribution systems could benefit from the exploration of trade-offs between water quality and pumping costs for the purpose of operational planning.
Exploration of the Trade-Offs between Water Quality and Pumping Costs in Optimal Operation of Regional Multiquality Water Distribution Systems
This paper explores the trade-offs between water quality and pumping costs objectives in optimization of operation of regional multiquality water distribution systems. The optimization model is designed to concurrently minimize each objective, where water quality is represented by the deviations of constituent concentrations from required values and pumping costs are represented by energy consumed by the pumps. The optimization problem is solved using an optimization software, incorporating the nondominated sorting genetic algorithm II (NSGA-II), linked with network analysis software. Two typical but purposefully different example networks are used. First, a network with multiple water sources of different qualities and second, a network with one water source only, which was converted to represent a regional nondrinking water distribution system. The trade-offs between water quality and pumping costs are explored using a total of 14 scenarios reflecting different water quality configurations of these networks. Those scenarios, into which time variability was introduced for both source water quality and customer water quality requirements, were systematically developed to represent real-life situations that could be found in practice. The results indicate that for the majority of the scenarios, there is a trade-off with a competing nature between water quality and pumping costs objectives. Additionally, it was discovered that multiobjective optimization problems with water quality (i.e., concentration deviations) and pumping costs objectives could be reduced in certain instances into a single-objective problem of minimizing pumping costs. In fact, a regional water distribution system in which water quality is represented by a single conservative constituent can produce either a trade-off or single-objective solution between those two objectives, and this outcome is dependent on both the water quality configuration of the system and system operational flexibility. Last, some particular conclusions are drawn for both a water distribution system with multiple water sources and a water distribution system with a single water source, which suggest how changes in source water qualities or customer water quality requirements may impact system operation. It is, therefore, demonstrated that water utilities which operate regional multiquality nondrinking water distribution systems could benefit from the exploration of trade-offs between water quality and pumping costs for the purpose of operational planning.
Exploration of the Trade-Offs between Water Quality and Pumping Costs in Optimal Operation of Regional Multiquality Water Distribution Systems
Mala-Jetmarova, Helena (author) / Barton, Andrew (author) / Bagirov, Adil (author)
2014-08-07
Article (Journal)
Electronic Resource
Unknown
British Library Online Contents | 2015
|Design of Optimal Reliable Multiquality Water-Supply Systems
British Library Online Contents | 1996
|Designing Optimal Reliable Multiquality Water Supply Systems
British Library Conference Proceedings | 1994
|