A platform for research: civil engineering, architecture and urbanism
Visualizing Conduit Flows around Solitary Air Pockets by FVT and HSPIV
Understanding flow characteristics around air pockets is fundamental in the study of air entrainment and transport in pipelines. This study deals with the use of flow visualization technique (FVT) and high-speed particle image velocimetry (HSPIV) in exploration of the characteristics around stationary air pockets in horizontal-pipe flow. The air-pocket volume varies from 0 to 10.0 mL, and the air pocket is injected into a fully developed turbulent flow with Reynolds numbers between 17,000 and 18,400. In the plane of symmetry, the main flow features include (1) a horseshoe vortex upstream, (2) a stagnation point on the frontal interface, (3) a separation point and a separated shear layer beneath, (4) a reattached shear layer downstream of the reattachment point (for air-pocket volumes greater than 2.0 mL), and (5) a reverse-flow region downstream. The deformable air pocket in the turbulent flow causes streamwise random movements of both the stagnation and separation points around their mean positions. The flow pattern is categorized based on the occurrence of either separated flow or flow reattachment. Fully separated flow (Mode I) occurs at air-pocket volumes less than 2.0 mL. Intermittently reattached flow (Mode II) occurs if the volume is within 2.0–5.0 mL. Fully reattached flow (Mode III) is evident at volumes greater than 5.0 mL. Water particles on the air-pocket surface move with the adjacent flow, thus forming a slip boundary. The evolution of mean streamwise velocity beneath the air pocket demonstrates the formation of either a separated or a reattached shear layer. Using nonlinear regression analysis, appropriate characteristic velocity and length scales are determined to obtain similarity profiles in the separated shear layer beneath.
Visualizing Conduit Flows around Solitary Air Pockets by FVT and HSPIV
Understanding flow characteristics around air pockets is fundamental in the study of air entrainment and transport in pipelines. This study deals with the use of flow visualization technique (FVT) and high-speed particle image velocimetry (HSPIV) in exploration of the characteristics around stationary air pockets in horizontal-pipe flow. The air-pocket volume varies from 0 to 10.0 mL, and the air pocket is injected into a fully developed turbulent flow with Reynolds numbers between 17,000 and 18,400. In the plane of symmetry, the main flow features include (1) a horseshoe vortex upstream, (2) a stagnation point on the frontal interface, (3) a separation point and a separated shear layer beneath, (4) a reattached shear layer downstream of the reattachment point (for air-pocket volumes greater than 2.0 mL), and (5) a reverse-flow region downstream. The deformable air pocket in the turbulent flow causes streamwise random movements of both the stagnation and separation points around their mean positions. The flow pattern is categorized based on the occurrence of either separated flow or flow reattachment. Fully separated flow (Mode I) occurs at air-pocket volumes less than 2.0 mL. Intermittently reattached flow (Mode II) occurs if the volume is within 2.0–5.0 mL. Fully reattached flow (Mode III) is evident at volumes greater than 5.0 mL. Water particles on the air-pocket surface move with the adjacent flow, thus forming a slip boundary. The evolution of mean streamwise velocity beneath the air pocket demonstrates the formation of either a separated or a reattached shear layer. Using nonlinear regression analysis, appropriate characteristic velocity and length scales are determined to obtain similarity profiles in the separated shear layer beneath.
Visualizing Conduit Flows around Solitary Air Pockets by FVT and HSPIV
Lin, Chang (author) / Liu, Ting (author) / Yang, James (author) / Lu, Chia-Hsun (author)
2014-10-01
Article (Journal)
Electronic Resource
Unknown
Visualizing Conduit Flows around Solitary Air Pockets by FVT and HSPIV
Online Contents | 2015
|Dividing Rectangular Closed Conduit Flows
Online Contents | 1996
|Dividing Rectangular Closed Conduit Flows
British Library Online Contents | 1996
|Visualizing Migration Flows Using Kriskograms
Online Contents | 2009
|British Library Online Contents | 2000