A platform for research: civil engineering, architecture and urbanism
Numerical Study of Flexural Behavior of Post-Tensioned Concrete-Filled Fiber-Reinforced Polymer Tube Beam
Concrete-filled fiber tubes (CFFT) are gaining prominence as a feasible alternative to traditional materials for a variety of structural applications. However, research on structural performance of CFFT beams is still scarce. This paper presents a finite-element (FE) analysis of CFFT beams validated by experimental results from literature. Then, a parametric study investigating structural performance of post-tensioned (PT CFFT) beams was conducted using 34 FE models using ANSYS nonlinear FE software program. The parametric study results showed that both normal-strength concrete (NSC) and high-strength concrete (HSC) filled PT CFFT exhibit identical nonlinear responses. Increasing the prestressed and non-prestressed reinforcement ratio significantly improved the overall performance of PT CFFT beams. Placing the PT tendons at the bottom of PT CFFT beams enhanced the cracking, yielding, and ultimate load-carrying capacities by 7.98%, 12.32%, and 9.03% for NSC-filled PT CFFT beams, respectively. Doubling the axial stiffness of the tube laminate structure increased the ultimate load, energy absorption capacity (EAC), pre-yielding stiffness (), and post-yielding stiffness () by 18.5%, 12.15%, 9.21%, and 8.2%, respectively for NSC-filled PT CFFT beams. Beams with straight PT tendons exhibited increased cracking, yielding, and ultimate load capacity by 10.85%, 14.60%, and 13.58% more than those with curved-profile tendons. The ductility of PT CFFT beams is more sensitive to the amount of prestressed reinforcement ratio and concrete strength has a minimal effect on the structural performance of PT CFFT beams.
Numerical Study of Flexural Behavior of Post-Tensioned Concrete-Filled Fiber-Reinforced Polymer Tube Beam
Concrete-filled fiber tubes (CFFT) are gaining prominence as a feasible alternative to traditional materials for a variety of structural applications. However, research on structural performance of CFFT beams is still scarce. This paper presents a finite-element (FE) analysis of CFFT beams validated by experimental results from literature. Then, a parametric study investigating structural performance of post-tensioned (PT CFFT) beams was conducted using 34 FE models using ANSYS nonlinear FE software program. The parametric study results showed that both normal-strength concrete (NSC) and high-strength concrete (HSC) filled PT CFFT exhibit identical nonlinear responses. Increasing the prestressed and non-prestressed reinforcement ratio significantly improved the overall performance of PT CFFT beams. Placing the PT tendons at the bottom of PT CFFT beams enhanced the cracking, yielding, and ultimate load-carrying capacities by 7.98%, 12.32%, and 9.03% for NSC-filled PT CFFT beams, respectively. Doubling the axial stiffness of the tube laminate structure increased the ultimate load, energy absorption capacity (EAC), pre-yielding stiffness (), and post-yielding stiffness () by 18.5%, 12.15%, 9.21%, and 8.2%, respectively for NSC-filled PT CFFT beams. Beams with straight PT tendons exhibited increased cracking, yielding, and ultimate load capacity by 10.85%, 14.60%, and 13.58% more than those with curved-profile tendons. The ductility of PT CFFT beams is more sensitive to the amount of prestressed reinforcement ratio and concrete strength has a minimal effect on the structural performance of PT CFFT beams.
Numerical Study of Flexural Behavior of Post-Tensioned Concrete-Filled Fiber-Reinforced Polymer Tube Beam
Pract. Period. Struct. Des. Constr.
Radie, Edoniyas Birhanu (author) / Urgessa, Girum (author) / Mohammed, Tesfaye Alemu (author)
2024-11-01
Article (Journal)
Electronic Resource
English
Flexural Capacity of Fiber-Reinforced Polymer Strengthened Unbonded Post-Tensioned Members
Online Contents | 2014
|Flexural behavior of concrete-filled fiber-reinforced polymer circular tubes
Tema Archive | 2002
|Flexural Behavior of Concrete-Filled Fiber-Reinforced Polymer Circular Tubes
British Library Online Contents | 2002
|