A platform for research: civil engineering, architecture and urbanism
Performance of Multiwalled Carbon Nanotube Doped Fired Clay Bricks
In this study, the effect of multiwall carbon nanotubes (MWCNTs) on various properties of a fired clay brick was investigated and subsequently compared with other kinds of bricks. MWCNT doped bricks and traditional bricks were prepared in laboratory conditions and commercially available bricks were obtained from a nearby manufacturer. Each group of bricks were subjected to various tests such as visual examination, dimension tolerance test, efflorescence test, water absorption test, impact resistance test, soundness test, hardness test, structure test, compressive strength test, and scanning electron microscopy (SEM) imaging. An extensive characterization of soil, water, and MWCNT was carried out. X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS) were done to characterize soil in addition to basic consistency limit tests. MWCNT was characterized using XRD, SEM-EDS, and Fourier transform infrared spectroscopy (FTIR). Soil passing through a 425-μm sieve was used to manufacture MWCNT doped brick (0.01% of water by weight) and traditional bricks. The compressive strength of MWCNT doped bricks was 53.9% and 45.52% more as compared to commercially available and traditional bricks. An adequate reduction in water absorption was recorded when compared with traditional and commercially available bricks. Economic analysis was also carried out, which marked an increase of $0.0134 per brick in the manufacturing of MWCNT doped bricks.
Performance of Multiwalled Carbon Nanotube Doped Fired Clay Bricks
In this study, the effect of multiwall carbon nanotubes (MWCNTs) on various properties of a fired clay brick was investigated and subsequently compared with other kinds of bricks. MWCNT doped bricks and traditional bricks were prepared in laboratory conditions and commercially available bricks were obtained from a nearby manufacturer. Each group of bricks were subjected to various tests such as visual examination, dimension tolerance test, efflorescence test, water absorption test, impact resistance test, soundness test, hardness test, structure test, compressive strength test, and scanning electron microscopy (SEM) imaging. An extensive characterization of soil, water, and MWCNT was carried out. X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS) were done to characterize soil in addition to basic consistency limit tests. MWCNT was characterized using XRD, SEM-EDS, and Fourier transform infrared spectroscopy (FTIR). Soil passing through a 425-μm sieve was used to manufacture MWCNT doped brick (0.01% of water by weight) and traditional bricks. The compressive strength of MWCNT doped bricks was 53.9% and 45.52% more as compared to commercially available and traditional bricks. An adequate reduction in water absorption was recorded when compared with traditional and commercially available bricks. Economic analysis was also carried out, which marked an increase of $0.0134 per brick in the manufacturing of MWCNT doped bricks.
Performance of Multiwalled Carbon Nanotube Doped Fired Clay Bricks
J. Mater. Civ. Eng.
Kumar, Anish (author) / Sinha, Sanjeev (author)
2022-12-01
Article (Journal)
Electronic Resource
English
Vanadium staining in fired clay bricks
Tema Archive | 2003
|Characteristics of fired clay bricks with pumice additive
Online Contents | 2015
|Use of TEOS for fired-clay bricks consolidation
Springer Verlag | 2013
|Possible use of biosolids in fired-clay bricks
Online Contents | 2015
|Possible use of biosolids in fired-clay bricks
British Library Online Contents | 2015
|