A platform for research: civil engineering, architecture and urbanism
Accelerated Design of Architected Materials with Multifidelity Bayesian Optimization
In this work, we present a multifidelity Bayesian optimization framework for designing architected materials with optimal energy absorption during compression. Data from both physical experiments (high fidelity) and numerical simulations (low fidelity) are fed in parallel to train the surrogate model, which iteratively decides the next sets of experiments and simulations to run in order to find the optimal structural parameters. We show that having multifidelity data sources allows the optimization framework to find the optimum after fewer iterations relative to using a single high-fidelity source. This saves both material costs and time in the optimization process. Finally, we also apply constraints (on relative density and stress variations) to the optimization process, finding optimal structures within the bounds of the constraints. This framework can be translated to other problems that require complex, high-fidelity, labor-intensive experiments while automating low-fidelity simulations.
Accelerated Design of Architected Materials with Multifidelity Bayesian Optimization
In this work, we present a multifidelity Bayesian optimization framework for designing architected materials with optimal energy absorption during compression. Data from both physical experiments (high fidelity) and numerical simulations (low fidelity) are fed in parallel to train the surrogate model, which iteratively decides the next sets of experiments and simulations to run in order to find the optimal structural parameters. We show that having multifidelity data sources allows the optimization framework to find the optimum after fewer iterations relative to using a single high-fidelity source. This saves both material costs and time in the optimization process. Finally, we also apply constraints (on relative density and stress variations) to the optimization process, finding optimal structures within the bounds of the constraints. This framework can be translated to other problems that require complex, high-fidelity, labor-intensive experiments while automating low-fidelity simulations.
Accelerated Design of Architected Materials with Multifidelity Bayesian Optimization
J. Eng. Mech.
Mo, Chengyang (author) / Perdikaris, Paris (author) / Raney, Jordan R. (author)
2023-06-01
Article (Journal)
Electronic Resource
English
TIBKAT | 2025
|Constrained multifidelity optimization using model calibration
British Library Online Contents | 2012
|Biomimetic architected materials with improved dynamic performance
British Library Online Contents | 2019
|