A platform for research: civil engineering, architecture and urbanism
Microwave-assisted extraction with natural deep eutectic solvents for polyphenol recovery from agrifood waste: Mature for scaling-up?
Agrifood industries generate large amounts of waste that may result in remarkable environmental problems, such as soil and water contamination. Therefore, proper waste management and treatment have become an environmental, economic, and social challenge. Most of these wastes are exceptionally rich in bioactive compounds (e.g., polyphenols) with potential applications in the food, cosmetic, and pharmaceutical industries. Indeed, the recovery of polyphenols from agrifood waste is an example of circular bioeconomy, which contributes to the valorization of waste while providing solutions to environmental problems. In this context, unconventional extraction techniques at the industrial scale, such as microwave-assisted extraction (MAE), which has demonstrated its efficacy at the laboratory level for analytical purposes, have been suggested to search for more efficient recovery procedures. On the other hand, natural deep eutectic solvents (NADES) have been proposed as an efficient and green alternative to typical extraction solvents. This review aims to provide comprehensive insights regarding the extraction of phenolic compounds from agrifood waste. Specifically, it focuses on the utilization of MAE in conjunction with NADES. Moreover, this review delves into the possibilities of recycling and reusing NADES for a more sustainable and cost-efficient industrial application. The results obtained with the MAE-NADES approach show its high extraction efficiency while contributing to green practices in the field of natural product extraction. However, further research is necessary to improve our understanding of these extraction strategies, optimize product yields, and reduce overall costs, to facilitate the scaling-up. ; Peer Reviewed ; Postprint (published version)
Microwave-assisted extraction with natural deep eutectic solvents for polyphenol recovery from agrifood waste: Mature for scaling-up?
Agrifood industries generate large amounts of waste that may result in remarkable environmental problems, such as soil and water contamination. Therefore, proper waste management and treatment have become an environmental, economic, and social challenge. Most of these wastes are exceptionally rich in bioactive compounds (e.g., polyphenols) with potential applications in the food, cosmetic, and pharmaceutical industries. Indeed, the recovery of polyphenols from agrifood waste is an example of circular bioeconomy, which contributes to the valorization of waste while providing solutions to environmental problems. In this context, unconventional extraction techniques at the industrial scale, such as microwave-assisted extraction (MAE), which has demonstrated its efficacy at the laboratory level for analytical purposes, have been suggested to search for more efficient recovery procedures. On the other hand, natural deep eutectic solvents (NADES) have been proposed as an efficient and green alternative to typical extraction solvents. This review aims to provide comprehensive insights regarding the extraction of phenolic compounds from agrifood waste. Specifically, it focuses on the utilization of MAE in conjunction with NADES. Moreover, this review delves into the possibilities of recycling and reusing NADES for a more sustainable and cost-efficient industrial application. The results obtained with the MAE-NADES approach show its high extraction efficiency while contributing to green practices in the field of natural product extraction. However, further research is necessary to improve our understanding of these extraction strategies, optimize product yields, and reduce overall costs, to facilitate the scaling-up. ; Peer Reviewed ; Postprint (published version)
Microwave-assisted extraction with natural deep eutectic solvents for polyphenol recovery from agrifood waste: Mature for scaling-up?
Tapia Quirós, Paulina (author) / Granados, Mercè (author) / Sentellas Minguillon, Sonia (author) / Saurina Purroy, Javier Vicente (author) / Universitat Politècnica de Catalunya. Departament d'Enginyeria Química
2024-02-20
doi:10.1016/j.scitotenv.2023.168716
Article (Journal)
Electronic Resource
English
DDC:
710
Biocatalyzed Vinyl Laurate Transesterification in Natural Deep Eutectic Solvents
Springer Verlag | 2024
|Highly efficient selective extraction of Mo with novel hydrophobic deep eutectic solvents
Taylor & Francis Verlag | 2021
|Extraction of Phenol as Pollutant from Aqueous Effluents Using Hydrophobic Deep Eutectic Solvents
DOAJ | 2023
|