A platform for research: civil engineering, architecture and urbanism
Mapping foliar nutrition using WorldView-3 and WorldView-2 to assess koala habitat suitability
Conservation planning and population assessment for widely-distributed, but vulnerable, arboreal folivore species demands cost-effective mapping of habitat suitability over large areas. This study tested whether multispectral data from WorldView-3 could be used to estimate and map foliar digestible nitrogen (DigN), a nutritional measure superior to total nitrogen for tannin-rich foliage for the koala (Phascolarctos cinereus). We acquired two WorldView-3 images (November 2015) and collected leaf samples from Eucalyptus woodlands in semi-arid eastern Australia. Linear regression indicated the normalized difference index using bands “Coastal” and “NIR1” best estimated DigN concentration (% dry matter, R2 = 0.70, RMSE = 0.19%). Foliar DigN concentration was mapped for multi-species Eucalyptus open woodlands across two landscapes using this index. This mapping method was tested on a WorldView-2 image (October 2012) with associated koala tracking data (August 2010 to November 2011) from a different landscape of the study region. Quantile regression showed significant positive relationship between estimated DigN and occurrence of koalas at 0.999 quantile (R2 = 0.63). This study reports the first attempt to use a multispectral satellite-derived spectral index for mapping foliar DigN at a landscape-scale (100s km2). The mapping method can potentially be incorporated in mapping and monitoring koala habitat suitability for conservation management.
Mapping foliar nutrition using WorldView-3 and WorldView-2 to assess koala habitat suitability
Conservation planning and population assessment for widely-distributed, but vulnerable, arboreal folivore species demands cost-effective mapping of habitat suitability over large areas. This study tested whether multispectral data from WorldView-3 could be used to estimate and map foliar digestible nitrogen (DigN), a nutritional measure superior to total nitrogen for tannin-rich foliage for the koala (Phascolarctos cinereus). We acquired two WorldView-3 images (November 2015) and collected leaf samples from Eucalyptus woodlands in semi-arid eastern Australia. Linear regression indicated the normalized difference index using bands “Coastal” and “NIR1” best estimated DigN concentration (% dry matter, R2 = 0.70, RMSE = 0.19%). Foliar DigN concentration was mapped for multi-species Eucalyptus open woodlands across two landscapes using this index. This mapping method was tested on a WorldView-2 image (October 2012) with associated koala tracking data (August 2010 to November 2011) from a different landscape of the study region. Quantile regression showed significant positive relationship between estimated DigN and occurrence of koalas at 0.999 quantile (R2 = 0.63). This study reports the first attempt to use a multispectral satellite-derived spectral index for mapping foliar DigN at a landscape-scale (100s km2). The mapping method can potentially be incorporated in mapping and monitoring koala habitat suitability for conservation management.
Mapping foliar nutrition using WorldView-3 and WorldView-2 to assess koala habitat suitability
Wu, Hui Ying (author) / Levin, Noam (author) / Seabrook, Leonie (author) / Moore, Ben D. (R16979) (author) / McAlpine, Clive A. (author) / Hawkesbury Institute for the Environment (Host institution)
2019-01-01
Remote Sensing--2072-4292 Vol. 11 Issue. 3 No. 215
Article (Journal)
Electronic Resource
English
WORLDVIEW GLOBAL ALLIANCE INTERVIEW
Online Contents | 2010
Vegetation Burn Severity Mapping Using Landsat-8 and WorldView-2
Online Contents | 2015
|WORLDVIEW GLOBAL ALLIANCE SPECIAL FEATURE
Online Contents | 2011
Built-up and vegetation extraction and density mapping using WorldView-II
Online Contents | 2012
|