A platform for research: civil engineering, architecture and urbanism
Computational Fluid Dynamics in Unruptured Intracranial Aneurysms
Introduction and Objective: Intracranial aneurysm, also known as brain aneurysm, is a cerebrovascular disorder in which weakness in the wall of a cerebral artery causes a localized dilation or ballooning of the blood vessel. There is no objective way, device or tools, of predicting rupture of aneurysm so far. Computational fluid dynamics (CFDs) was proposed as a tool to identify the rupture risk. Purpose of study: To reveal the correlation of CFD findings with intraoperative microscopic findings and prove the relevance of CFDin the prediction of rupture risk and in the management of unruptured intracranial aneurysms. Subjects and Methods: A prospective cohort study was conducted inNeurosurgery department of Fujita Health University Banbuntane Hotokukai Hospital, Nagoya, Japanduring a 3?month period in 2018,from January to March, Ten patientswere diagnosed unruptured intracranial aneurysms (UIA). In diagnosis computed tomography (CT) angiogram, CFD and digital subtraction angiogram were included. Intraoperatively microscopic examination of the aneurysm wall was carried out and images recorded. The correlation between microscopic dome morphology and CFD information was performed. Results: Nine cases were found intraoperatively to have a higher risk of rupture based on the thinning of the wall. One cases had an atherosclerotic wall. All cases had low wall shear stress (WSS). In 90 % of cases Low WSS was able to predict the potency rupture risk in the near future. Conclusions: This study of CFD and its correlation with intraoperativefindings of the aneurysm suggested that low WSS of the aneurysm wall is associated with thin wall aneurysm and hence increased risk of aneurysm rupture. Thus CFD can be used to predict the risk of rupture of unruptured aneurysm and for planning of its treatment.
Computational Fluid Dynamics in Unruptured Intracranial Aneurysms
Introduction and Objective: Intracranial aneurysm, also known as brain aneurysm, is a cerebrovascular disorder in which weakness in the wall of a cerebral artery causes a localized dilation or ballooning of the blood vessel. There is no objective way, device or tools, of predicting rupture of aneurysm so far. Computational fluid dynamics (CFDs) was proposed as a tool to identify the rupture risk. Purpose of study: To reveal the correlation of CFD findings with intraoperative microscopic findings and prove the relevance of CFDin the prediction of rupture risk and in the management of unruptured intracranial aneurysms. Subjects and Methods: A prospective cohort study was conducted inNeurosurgery department of Fujita Health University Banbuntane Hotokukai Hospital, Nagoya, Japanduring a 3?month period in 2018,from January to March, Ten patientswere diagnosed unruptured intracranial aneurysms (UIA). In diagnosis computed tomography (CT) angiogram, CFD and digital subtraction angiogram were included. Intraoperatively microscopic examination of the aneurysm wall was carried out and images recorded. The correlation between microscopic dome morphology and CFD information was performed. Results: Nine cases were found intraoperatively to have a higher risk of rupture based on the thinning of the wall. One cases had an atherosclerotic wall. All cases had low wall shear stress (WSS). In 90 % of cases Low WSS was able to predict the potency rupture risk in the near future. Conclusions: This study of CFD and its correlation with intraoperativefindings of the aneurysm suggested that low WSS of the aneurysm wall is associated with thin wall aneurysm and hence increased risk of aneurysm rupture. Thus CFD can be used to predict the risk of rupture of unruptured aneurysm and for planning of its treatment.
Computational Fluid Dynamics in Unruptured Intracranial Aneurysms
Matmusaev, Maruf (author) / Yamada, Yasuhiro (author) / Kawase, Tsukasa (author) / Tanaka, Riki (author) / Kyosuke, Miyatani (author) / Kato, Yoko (author) / Ansari, Ahmed (author)
2018-06-15
Romanian Neurosurgery; Vol. XXXII, No. 2 (2018); 332-339 ; 2344-4959 ; 1220-8841
Article (Journal)
Electronic Resource
English
DDC:
690
Computational fluid dynamics in brain aneurysms
British Library Online Contents | 2012
|Hemodynamic analysis of intracranial aneurysms with moving parent arteries: Basilar tip aneurysms
British Library Online Contents | 2010
British Library Online Contents | 2016
|Rupture risk prediction of intracranial aneurysms using open source CFD software
BASE | 2017
|Suppression of Wall Shear Stress inside Intracranial Aneurysms by Simple Stents
BASE | 2016
|