A platform for research: civil engineering, architecture and urbanism
A study of the rail degradation process to predict rail breaks
Rail infrastructure is a large and costly investment, and has a long life. To realize the benefits from this investment, effective maintenance is required. Railways are one of the prime modes of transportation in many countries and as they are closely associated with passenger and cargo transportation, they own high risk in terms of potential loss of human life and damage/destruction of assets. New technologies and stringent safety standards are constantly being introduced, but accidents still occur. There will always be some risk associated with derailments and collisions, but it can be reduced by elimination of the root causes by means of an effective maintenance strategy to govern optimization of inspection, lubrication and grinding frequency and/or improvement in skill and efficiency. A detailed study of the defects which emerge both in the rolling stock and the rail infrastructure is essential to identify the correct maintenance strategy. Detection and rectification of rail defects/degradations are major issues for all rail players around the world. Some of the rail degradations include worn out rails, weld problems, internal defects, corrugations and rolling contact fatigue (RCF) initiated problems such as surface cracks, head checks, squats, spalling and shelling. If undetected and/or untreated, these defects can lead to rail breaks and derailments. Efficient maintenance strategies can reduce potential risk of rail breaks and derailments. A potential risk is the risk which accumulates in the form of rail degradation over a period of time. In spite of continuous efforts made by all rail infrastructure operators around the world to reduce costs, a substantial proportion of railway budget is spent on rail maintenance. It is understood that the consequential costs due to derailment reduces with increase in inspection, lubrication, grinding and replacement costs. The challenge is to find a balance between the maintenance costs which consists of inspection, lubrication and grinding costs, and consequential ...
A study of the rail degradation process to predict rail breaks
Rail infrastructure is a large and costly investment, and has a long life. To realize the benefits from this investment, effective maintenance is required. Railways are one of the prime modes of transportation in many countries and as they are closely associated with passenger and cargo transportation, they own high risk in terms of potential loss of human life and damage/destruction of assets. New technologies and stringent safety standards are constantly being introduced, but accidents still occur. There will always be some risk associated with derailments and collisions, but it can be reduced by elimination of the root causes by means of an effective maintenance strategy to govern optimization of inspection, lubrication and grinding frequency and/or improvement in skill and efficiency. A detailed study of the defects which emerge both in the rolling stock and the rail infrastructure is essential to identify the correct maintenance strategy. Detection and rectification of rail defects/degradations are major issues for all rail players around the world. Some of the rail degradations include worn out rails, weld problems, internal defects, corrugations and rolling contact fatigue (RCF) initiated problems such as surface cracks, head checks, squats, spalling and shelling. If undetected and/or untreated, these defects can lead to rail breaks and derailments. Efficient maintenance strategies can reduce potential risk of rail breaks and derailments. A potential risk is the risk which accumulates in the form of rail degradation over a period of time. In spite of continuous efforts made by all rail infrastructure operators around the world to reduce costs, a substantial proportion of railway budget is spent on rail maintenance. It is understood that the consequential costs due to derailment reduces with increase in inspection, lubrication, grinding and replacement costs. The challenge is to find a balance between the maintenance costs which consists of inspection, lubrication and grinding costs, and consequential ...
A study of the rail degradation process to predict rail breaks
Kumar, Saurabh (author)
2006-01-01
2006:73
Theses
Electronic Resource
English
Probabilistic Model for Predicting Rail Breaks and Controlling Risk of Derailment
British Library Online Contents | 2007
|Auckland: New Auckland/Palmerston North rail service breaks ground in container logistics
British Library Online Contents | 2001
Online Contents | 1999
Wheel/rail rolling contact fatigue - Probe, predict, prevent
British Library Online Contents | 2014
|