A platform for research: civil engineering, architecture and urbanism
Multi-objective optimization for the maximization of the operating share of cogeneration system in District Heating Network
The aim of the paper is to define optimal operational strategies for Combined Heat and Power plants connected to civil/residential District Heating Networks. The role of a reduced number of design variables, including a Thermal Energy Storage system and a hybrid operational strategy dependent on the storage level, is considered. The basic principle is to reach maximum efficiency of the system operation through the utilization of an optimal-sized Thermal Energy Storage. Objective functions of both energetic and combined energetic and economic can be considered. In particular, First and Second Law Efficiency, thermal losses of the storage, number of starts and stops of the combined heat and power unit are considered. Constraints are imposed to nullify the waste of heat and to operate the unit at its maximum efficiency for the highest possible number of consecutive operating hours, until the thermal tank cannot store more energy. The methodology is applied to a detailed case study: a medium size district heating system, in an urban context in the northern Italy, powered by a combined heat and power plant supported by conventional auxiliary boilers. The issues involving this type of thermal loads are also widely investigated in the paper. An increase of Second Law Efficiency of the system of 26% (from 0.35 to 0.44) can be evidenced, while the First Law Efficiency shifts from about 0.74 to 0.84. The optimization strategy permits of combining the economic benefit of cogeneration with the idea of reducing the energy waste and exergy losses.
Multi-objective optimization for the maximization of the operating share of cogeneration system in District Heating Network
The aim of the paper is to define optimal operational strategies for Combined Heat and Power plants connected to civil/residential District Heating Networks. The role of a reduced number of design variables, including a Thermal Energy Storage system and a hybrid operational strategy dependent on the storage level, is considered. The basic principle is to reach maximum efficiency of the system operation through the utilization of an optimal-sized Thermal Energy Storage. Objective functions of both energetic and combined energetic and economic can be considered. In particular, First and Second Law Efficiency, thermal losses of the storage, number of starts and stops of the combined heat and power unit are considered. Constraints are imposed to nullify the waste of heat and to operate the unit at its maximum efficiency for the highest possible number of consecutive operating hours, until the thermal tank cannot store more energy. The methodology is applied to a detailed case study: a medium size district heating system, in an urban context in the northern Italy, powered by a combined heat and power plant supported by conventional auxiliary boilers. The issues involving this type of thermal loads are also widely investigated in the paper. An increase of Second Law Efficiency of the system of 26% (from 0.35 to 0.44) can be evidenced, while the First Law Efficiency shifts from about 0.74 to 0.84. The optimization strategy permits of combining the economic benefit of cogeneration with the idea of reducing the energy waste and exergy losses.
Multi-objective optimization for the maximization of the operating share of cogeneration system in District Heating Network
FRANCO, ALESSANDRO (author) / Versace, Michele (author) / Franco, Alessandro / Versace, Michele
2017-01-01
Article (Journal)
Electronic Resource
English
DDC:
690
Cogeneration unit with an absorption heat pump for the district heating system
Taylor & Francis Verlag | 2014
|Gas Turbines for the Cogeneration of Electric Power and District Heating
British Library Online Contents | 1996
|Gas Turbines for the Cogeneration of Electric Power and District Heating
British Library Conference Proceedings | 1996
|