A platform for research: civil engineering, architecture and urbanism
Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: compressible and incompressible plasticity
This paper presents the application of a stabilized mixed strain/displacement finite element formulation for the solution of nonlinear solid mechanics problems involving compressible and incompressible plasticity. The variational multiscale stabilization introduced allows the use of equal order interpolations in a consistent way. Such formulation presents two advantages when compared to the standard, displacement based, irreducible formulation: (a) it provides enhanced rate of convergence for the strain (and stress) field and (b) it is able to deal with incompressible situations. The first advantage also applies to the comparison with the mixed pressure/displacement formulation. The paper investigates the effect of the improved strain and stress fields in problems involving strain softening and localization leading to failure, using low order finite elements with continuous strain and displacement fields (P1P1 triangles or tetrahedra and Q1Q1 quadrilaterals, hexahedra, and triangular prisms) in conjunction with an associative frictional Drucker-Prager plastic model. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to a previously proposed pressure/displacement formulation. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary. ; Peer Reviewed ; Postprint (author’s final draft)
Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: compressible and incompressible plasticity
This paper presents the application of a stabilized mixed strain/displacement finite element formulation for the solution of nonlinear solid mechanics problems involving compressible and incompressible plasticity. The variational multiscale stabilization introduced allows the use of equal order interpolations in a consistent way. Such formulation presents two advantages when compared to the standard, displacement based, irreducible formulation: (a) it provides enhanced rate of convergence for the strain (and stress) field and (b) it is able to deal with incompressible situations. The first advantage also applies to the comparison with the mixed pressure/displacement formulation. The paper investigates the effect of the improved strain and stress fields in problems involving strain softening and localization leading to failure, using low order finite elements with continuous strain and displacement fields (P1P1 triangles or tetrahedra and Q1Q1 quadrilaterals, hexahedra, and triangular prisms) in conjunction with an associative frictional Drucker-Prager plastic model. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to a previously proposed pressure/displacement formulation. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary. ; Peer Reviewed ; Postprint (author’s final draft)
Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: compressible and incompressible plasticity
Cervera Ruiz, Miguel (author) / Chiumenti, Michele (author) / Benedetti, Lorenzo (author) / Codina, Ramon (author) / Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria / Centre Internacional de Mètodes Numèrics en Enginyeria / Universitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria / Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus / Universitat Politècnica de Catalunya. ANiComp - Anàlisi numèrica i computació científica
2015-03-01
doi:10.1016/j.cma.2014.11.040
Article (Journal)
Electronic Resource
English
Àrees temàtiques de la UPC::Física::Física de l’estat sòlid , Àrees temàtiques de la UPC::Enginyeria civil::Materials i estructures , Plasticity--Mathematical models , Mixed finite elements , Stabilization , Plasticity , Strain softening , Strain localization , Mesh dependence , J2 plasticity , plane-stress , localization , elastoplasticity , discontinuities , formulation , bifurcation , equations , strain , Plasticitat -- Mètodes numèrics
British Library Online Contents | 2016
|Efficient virtual element formulations for compressible and incompressible finite deformations
British Library Online Contents | 2017
|British Library Online Contents | 1998
|Stabilized Finite Element Simulation of Incompressible High Reynolds Number Flow
British Library Conference Proceedings | 1997
|