A platform for research: civil engineering, architecture and urbanism
Photocatalytic applications of layered niobates and their composites
Photocatalytic applications of two-dimensional (2D) materials have called great interest due to several electronic and structural advantages. Among these materials, layered niobates are well-known photocatalysts for H2 evolution with a rich surface chemistry. Taking into account the highly exposed active sites of its 2D structure and the morphological flexibility, the properties of the exfoliated hexaniobate as a heterogeneous photocatalyst has been explored in this work, with particular attention to the electronic and interfacial processes involved in the H2 evolution. Firstly, highly efficient photocatalytic surfaces were obtained through the layer-by-layer (LbL) deposition of hexaniobate nanoscrolls on conductive glasses. These films were deposited by using poly(allylamine hydrochloride) as a polyelectrolyte and further thermal treatment leading to films composed of a fuzzy assembly of hexaniobate nanoscrolls. This configuration favored the diffusion of water and methanol molecules thus facilitating an efficient H2 evolution. Moreover, pre-adsorption of [Pt(NH3)4]2+ cations on the niobate layers allowed the production of metallic Pt nanoclusters within the nanoscrolls. The Pt-modified films exhibited apparent quantum yields of (4.0 ± 0.5) % for H2 evolution from water/methanol mixtures under UV-A irradiation. Then, in order to induce novel electronic processes without changing the bulk properties of the hexaniobate, surface modification was performed by grafting with metallic nanoclusters. Exfoliated hexaniobate (K4−xHxNb6O17) composites with metal ions such as Co2+, Fe3+ and Cu2+ were prepared and their photocatalytic properties were fully investigated. Morphological characterization showed that the grafting ions are attached to the hexaniobate surface forming amorphous clusters. These species induce an additional absorption feature in the UV-A region, which is attributed to an interfacial charge transfer from the niobate valence band to the metal ion centers. In the case of Co2+ and Fe3+, enhanced UV-driven ...
Photocatalytic applications of layered niobates and their composites
Photocatalytic applications of two-dimensional (2D) materials have called great interest due to several electronic and structural advantages. Among these materials, layered niobates are well-known photocatalysts for H2 evolution with a rich surface chemistry. Taking into account the highly exposed active sites of its 2D structure and the morphological flexibility, the properties of the exfoliated hexaniobate as a heterogeneous photocatalyst has been explored in this work, with particular attention to the electronic and interfacial processes involved in the H2 evolution. Firstly, highly efficient photocatalytic surfaces were obtained through the layer-by-layer (LbL) deposition of hexaniobate nanoscrolls on conductive glasses. These films were deposited by using poly(allylamine hydrochloride) as a polyelectrolyte and further thermal treatment leading to films composed of a fuzzy assembly of hexaniobate nanoscrolls. This configuration favored the diffusion of water and methanol molecules thus facilitating an efficient H2 evolution. Moreover, pre-adsorption of [Pt(NH3)4]2+ cations on the niobate layers allowed the production of metallic Pt nanoclusters within the nanoscrolls. The Pt-modified films exhibited apparent quantum yields of (4.0 ± 0.5) % for H2 evolution from water/methanol mixtures under UV-A irradiation. Then, in order to induce novel electronic processes without changing the bulk properties of the hexaniobate, surface modification was performed by grafting with metallic nanoclusters. Exfoliated hexaniobate (K4−xHxNb6O17) composites with metal ions such as Co2+, Fe3+ and Cu2+ were prepared and their photocatalytic properties were fully investigated. Morphological characterization showed that the grafting ions are attached to the hexaniobate surface forming amorphous clusters. These species induce an additional absorption feature in the UV-A region, which is attributed to an interfacial charge transfer from the niobate valence band to the metal ion centers. In the case of Co2+ and Fe3+, enhanced UV-driven ...
Photocatalytic applications of layered niobates and their composites
Nascimento Nunes, Barbara (author)
2022-01-01
Theses
Electronic Resource
English
Mechanoluminescence Phenomenon of Niobates
British Library Online Contents | 2004
|British Library Online Contents | 2005
|Dielectric properties of barium titanium niobates
British Library Online Contents | 1997
|Dielectric Properties of Spark-Plasma-Sintered Strontium Niobates
British Library Conference Proceedings | 2006
|