A platform for research: civil engineering, architecture and urbanism
Structural behaviour of large size compressed earth blocks stabilized with jute fiber
Modern earth buildings constructed of Compressed Earth Blocks (CEBs) are low-cost, energy efficient, and sustainable. Environmental regulations suggest for zero emission of greenhouse gases. The strength of CEBs is usually enhanced with the addition of 5 to 10% of cement whose manufacturing may be harmful for the environment. A novel composite of soil (i.e. clay, sand and jute fiber) is used to produce CEBs without addition of cement. The jute fiber was added by weight from 0.5 to 2% to mixture of pulverized clay and sand and water. The CEBs were tested for compressive strength, tensile strength in terms of modulus of rupture, load vs deflection response, shrinkage, drying time and development of cracks. With the addition of jute fiber: (i) the compressive strength, deflection, drying time, shrinkage and cracks were reduced, (ii) the modulus of rupture slightly increased, and (iii) the load at failure was almost same. The addition of 0.5% of jute fiber was enough to minimize drying cracks. The CEBs reinforced with jute fiber dried in about half the time taken by those without fiber. The average compressive strength, tensile strength, and linear shrinkage of the CEBs are within acceptable limits prescribed by available guidelines. This paper shows that the CEBs manufactured using clay, sand and jute fiber could be used for construction of earth buildings instead of those stabilized with cement.
Structural behaviour of large size compressed earth blocks stabilized with jute fiber
Modern earth buildings constructed of Compressed Earth Blocks (CEBs) are low-cost, energy efficient, and sustainable. Environmental regulations suggest for zero emission of greenhouse gases. The strength of CEBs is usually enhanced with the addition of 5 to 10% of cement whose manufacturing may be harmful for the environment. A novel composite of soil (i.e. clay, sand and jute fiber) is used to produce CEBs without addition of cement. The jute fiber was added by weight from 0.5 to 2% to mixture of pulverized clay and sand and water. The CEBs were tested for compressive strength, tensile strength in terms of modulus of rupture, load vs deflection response, shrinkage, drying time and development of cracks. With the addition of jute fiber: (i) the compressive strength, deflection, drying time, shrinkage and cracks were reduced, (ii) the modulus of rupture slightly increased, and (iii) the load at failure was almost same. The addition of 0.5% of jute fiber was enough to minimize drying cracks. The CEBs reinforced with jute fiber dried in about half the time taken by those without fiber. The average compressive strength, tensile strength, and linear shrinkage of the CEBs are within acceptable limits prescribed by available guidelines. This paper shows that the CEBs manufactured using clay, sand and jute fiber could be used for construction of earth buildings instead of those stabilized with cement.
Structural behaviour of large size compressed earth blocks stabilized with jute fiber
Zardari, Muhamamd Auchar (author)
2020-05-23
Journal of Engineering Research; Vol 8 No 2 (2020): Journal of Engineering Research ; 2307-1885 ; 2307-1877
Article (Journal)
Electronic Resource
English
DDC:
690
External sulfate attack on compressed stabilized earth blocks
British Library Online Contents | 2019
|Taylor & Francis Verlag | 2019
|Potential Use of Enzymes in the Preparation of Compressed Stabilized Earth Blocks
Online Contents | 2017
|