A platform for research: civil engineering, architecture and urbanism
Resistance of stud shear connectors in composite beams using profiled steel sheeting
In composite beam design, headed stud shear connectors are commonly used to transfer longitudinal shear forces across the steel-concrete interface. This paper describes the structural performance of shear connection in composite beams with profiled steel sheeting. An accurate and efficient nonlinear Finite Element (FE) model was developed to study the behavior of headed stud shear connectors welded through the deck. The concrete slab considered in this article uses profiled steel sheeting with ribs perpendicular to the longitudinal axis of the steel beam. The material nonlinearities were included in the FE model. The concrete was modeled considering a damaged plasticity model available in ABAQUS software. The results obtained from FE analysis were verified against experimental results. A parametric study was conducted to observe the effects of changing of both the stud position inside the rib of profiled steel sheeting and the concrete strength on the resistance of the stud shear connector. The shear resistance of stud connectors obtained from the FE analysis and many experimental push-out tests whose results are available in the literature were used as a database to compare with design shear resistance calculated using AISC-LRFD and Eurocode 4. It is found that the shear resistance of stud connectors, obtained from the design rules specified in these codes, in some cases is greatly underestimated, and in other cases significantly overestimated. ; Peer Reviewed ; Postprint (author's final draft)
Resistance of stud shear connectors in composite beams using profiled steel sheeting
In composite beam design, headed stud shear connectors are commonly used to transfer longitudinal shear forces across the steel-concrete interface. This paper describes the structural performance of shear connection in composite beams with profiled steel sheeting. An accurate and efficient nonlinear Finite Element (FE) model was developed to study the behavior of headed stud shear connectors welded through the deck. The concrete slab considered in this article uses profiled steel sheeting with ribs perpendicular to the longitudinal axis of the steel beam. The material nonlinearities were included in the FE model. The concrete was modeled considering a damaged plasticity model available in ABAQUS software. The results obtained from FE analysis were verified against experimental results. A parametric study was conducted to observe the effects of changing of both the stud position inside the rib of profiled steel sheeting and the concrete strength on the resistance of the stud shear connector. The shear resistance of stud connectors obtained from the FE analysis and many experimental push-out tests whose results are available in the literature were used as a database to compare with design shear resistance calculated using AISC-LRFD and Eurocode 4. It is found that the shear resistance of stud connectors, obtained from the design rules specified in these codes, in some cases is greatly underestimated, and in other cases significantly overestimated. ; Peer Reviewed ; Postprint (author's final draft)
Resistance of stud shear connectors in composite beams using profiled steel sheeting
2019-05-01
Article (Journal)
Electronic Resource
English
DDC:
690
Shear Resistance of Stud Connectors with Profiled Steel Sheeting
British Library Conference Proceedings | 1997
|Shear Resistance of Stud Connectors with Profiled Sheeting
British Library Conference Proceedings | 1997
|Study of stud shear connectors behaviour in composite beams with profiled steel sheeting
BASE | 2015
|