A platform for research: civil engineering, architecture and urbanism
Optimal design solutions of concrete bridges considering environmental impact and investment cost
The most used design approach for civil engineering structures is a trial and error procedure; the designer chooses an initial configuration, tests it and changes it until all safety requirements are met with good material utilization. Such a procedure is time consuming and eventually leads to a feasible solution, while several better ones could be found. Indeed, together with safety, environmental impact and investment cost should be decisive factors for the selection of structural solutions. Thus, structural optimization with respect to environmental impact and cost has been the subject of many researches in the last decades. However, design techniques based on optimization haven’t replaced the traditional design procedure yet. One of the reasons might be the constructive feasibility of the optimal solution. Moreover, concerning reinforced concrete beam bridges, to the best of the author knowledge, no study in the literature has been published dealing with the optimization of the entire bridge including both the structural configuration and cross-section dimensions. In this thesis, a two-steps automatic design and optimization procedure for reinforced concrete road beam bridges is presented. The optimization procedure finds the solution that minimizes the investment cost and the environmental impact of the bridge, while fulfilling all requirements of Eurocodes. In the first step, given the soil morphology and the two points to connect, it selects the optimal number of spans, type of piers-deck connections and piers location taking into account any obstacle the bridge has to cross. In the second and final step, it finds the optimal dimensions of the deck cross-section and produces the detailed reinforcement design. Constructability is considered and quantified within the investment cost to avoid a merely theoretical optimization. The wellknown Genetic Algorithm (GA) and Pattern Search optimization algorithms have been used. However, to reduce the computational effort and make the procedure more user-friendly, a ...
Optimal design solutions of concrete bridges considering environmental impact and investment cost
The most used design approach for civil engineering structures is a trial and error procedure; the designer chooses an initial configuration, tests it and changes it until all safety requirements are met with good material utilization. Such a procedure is time consuming and eventually leads to a feasible solution, while several better ones could be found. Indeed, together with safety, environmental impact and investment cost should be decisive factors for the selection of structural solutions. Thus, structural optimization with respect to environmental impact and cost has been the subject of many researches in the last decades. However, design techniques based on optimization haven’t replaced the traditional design procedure yet. One of the reasons might be the constructive feasibility of the optimal solution. Moreover, concerning reinforced concrete beam bridges, to the best of the author knowledge, no study in the literature has been published dealing with the optimization of the entire bridge including both the structural configuration and cross-section dimensions. In this thesis, a two-steps automatic design and optimization procedure for reinforced concrete road beam bridges is presented. The optimization procedure finds the solution that minimizes the investment cost and the environmental impact of the bridge, while fulfilling all requirements of Eurocodes. In the first step, given the soil morphology and the two points to connect, it selects the optimal number of spans, type of piers-deck connections and piers location taking into account any obstacle the bridge has to cross. In the second and final step, it finds the optimal dimensions of the deck cross-section and produces the detailed reinforcement design. Constructability is considered and quantified within the investment cost to avoid a merely theoretical optimization. The wellknown Genetic Algorithm (GA) and Pattern Search optimization algorithms have been used. However, to reduce the computational effort and make the procedure more user-friendly, a ...
Optimal design solutions of concrete bridges considering environmental impact and investment cost
Khouri Chalouhi, Elisa (author)
2019-01-01
194
Theses
Electronic Resource
English
Optimal design solutions of concrete bridges considering environmental impact and investment cost
BASE | 2019
|Slab Frame Bridges : Structural Optimization Considering Investment Cost and Environmental Impacts
BASE | 2017
|Concrete design considering environmental performance
British Library Conference Proceedings | 2002
|On Reliability Based Optimal Design of Concrete Bridges
ASCE | 2000
|Environmental Impact Optimization of Reinforced Concrete Slab Frame Bridges
BASE | 2017
|