A platform for research: civil engineering, architecture and urbanism
Energy analysis in Water-Energy-Food-Carbon Nexus
Abstract This study evaluated the comprehensive Water-Energy-Food-Carbon Nexus (WEFC) by focusing on energy assessment in northwest Iran. The energy evaluation indices for different products were calculated by estimating the total input and output energies. Multi-objective optimization based on five individual objectives and WEFC Nexus policies was used to identify the optimal land-use allocation of wheat, barley, rapeseed, and sugar beet, silage corn, and potato while minimizing water and energy consumption and CO₂ emissions, and maximizing food production and profit. The results indicate that the suggested framework provides a practical methodology for determining the optimal land-use allocation considering quantitative WEFC Nexus. To increase economic efficiency and reduce energy consumption, agricultural practices and policy recommendations should be adopted, including promoting renewable energy sources, implementing energy-saving technologies, improving fertilizer management, improving crop rotation practices, conservation tillage, and improving water management and adoption of sustainable farming practices. The results allow policymakers to optimize multiple resources and recommend the best resource allocation under recommendation policy, technology, and constraints to achieve sustainable development in agriculture.
Energy analysis in Water-Energy-Food-Carbon Nexus
Abstract This study evaluated the comprehensive Water-Energy-Food-Carbon Nexus (WEFC) by focusing on energy assessment in northwest Iran. The energy evaluation indices for different products were calculated by estimating the total input and output energies. Multi-objective optimization based on five individual objectives and WEFC Nexus policies was used to identify the optimal land-use allocation of wheat, barley, rapeseed, and sugar beet, silage corn, and potato while minimizing water and energy consumption and CO₂ emissions, and maximizing food production and profit. The results indicate that the suggested framework provides a practical methodology for determining the optimal land-use allocation considering quantitative WEFC Nexus. To increase economic efficiency and reduce energy consumption, agricultural practices and policy recommendations should be adopted, including promoting renewable energy sources, implementing energy-saving technologies, improving fertilizer management, improving crop rotation practices, conservation tillage, and improving water management and adoption of sustainable farming practices. The results allow policymakers to optimize multiple resources and recommend the best resource allocation under recommendation policy, technology, and constraints to achieve sustainable development in agriculture.
Energy analysis in Water-Energy-Food-Carbon Nexus
Hasanzadeh Saray, M. (Marzieh) (author) / Torabi Haghighi, A. (Ali) (author)
2023-01-01
Article (Journal)
Electronic Resource
English
DDC:
690
Online Contents | 2016
|Wiley | 2021
|