A platform for research: civil engineering, architecture and urbanism
Methods for Control of Liquid Slosh
Horizontal movement of liquid containers is a common operation in an industrial packaging machine. During the movement the acceleration of the container induces motion of the liquid within the container, this is referred to as liquid slosh or liquid vibration. If there is too much slosh the liquid might wet the sealing surfaces of the container and even contaminate the machine. There is no measurement of the slosh so the only way to control the slosh is through the acceleration reference that defines the movement. The work presented in this thesis is focused on development of systematic methods for calculation of acceleration references that move the container as fast as possible without too much slosh. The methods are based on a simple model of the slosh phenomenon which is derived from fluid dynamics and system identification. The acceleration reference is calculated both directly using optimal control techniques with various cost functions and constraints and iteratively using iterative learning control. To enable practical evaluation of the acceleration references and the use of iterative learning control an experimental setup has been used where it is possible to measure the surface elevation on one side of the container using an infrared laser displacement sensor. The experimental evaluations show that it is possible to achieve fast movements by solving a minimum energy optimal control problem and tuning of the model parameters. It is also shown that the iterative learning control methods are successful in finding good acceleration references in practice using only a simple model of the slosh phenomenon. A method that utilize tilting of the container is also derived, this enables faster movements with less slosh. The methods simultaneously calculates the horizontal and rotational acceleration references by solving a minimum energy optimal control problem. Experiments show that the method is successful if the maximum allowed surface elevation is not too large.
Methods for Control of Liquid Slosh
Horizontal movement of liquid containers is a common operation in an industrial packaging machine. During the movement the acceleration of the container induces motion of the liquid within the container, this is referred to as liquid slosh or liquid vibration. If there is too much slosh the liquid might wet the sealing surfaces of the container and even contaminate the machine. There is no measurement of the slosh so the only way to control the slosh is through the acceleration reference that defines the movement. The work presented in this thesis is focused on development of systematic methods for calculation of acceleration references that move the container as fast as possible without too much slosh. The methods are based on a simple model of the slosh phenomenon which is derived from fluid dynamics and system identification. The acceleration reference is calculated both directly using optimal control techniques with various cost functions and constraints and iteratively using iterative learning control. To enable practical evaluation of the acceleration references and the use of iterative learning control an experimental setup has been used where it is possible to measure the surface elevation on one side of the container using an infrared laser displacement sensor. The experimental evaluations show that it is possible to achieve fast movements by solving a minimum energy optimal control problem and tuning of the model parameters. It is also shown that the iterative learning control methods are successful in finding good acceleration references in practice using only a simple model of the slosh phenomenon. A method that utilize tilting of the container is also derived, this enables faster movements with less slosh. The methods simultaneously calculates the horizontal and rotational acceleration references by solving a minimum energy optimal control problem. Experiments show that the method is successful if the maximum allowed surface elevation is not too large.
Methods for Control of Liquid Slosh
Grundelius, Mattias (author)
2001-01-01
PhD Thesis TFRT-1062; (2001) ; ISSN: 0280-5316
Theses
Electronic Resource
English
Iterative Optimal Control of Liquid Slosh in an Industrial Packaging Machine
BASE | 2000
|Experimental Investigation of Slosh Dynamics of Liquid-filled Containers
British Library Online Contents | 2001
|Finite Element Coupled Slosh Analysis of Rectangular Liquid Filled Laminated Composite Tanks
British Library Online Contents | 1999
|TECHNICAL NOTES - Coupled Slosh Dynamics of Liquid-Filled, Composite Cylindrical Tanks
Online Contents | 1999
|Experimental analysis of liquid vertical slosh damping at vacuum and atmospheric pressures
BASE | 2024
|