A platform for research: civil engineering, architecture and urbanism
Fracture Toughness of Short Fibre-Reinforced Composites—In Vitro Study
The development of dental materials needs to be supported with sound evidence. This in vitro study aimed to measure the fracture toughness of a short fibre-reinforced composite (sFRC), at differing thicknesses. In this study, 2 mm, 3 mm and 4 mm depths of sFRC were prepared. Using ISO4049, each preparation was tested to failure. A total of 60 samples were tested: 10 samples for each combination of sFRC and depth. Fractured samples were viewed, and outcomes were analysed. EXF showed greater toughness than EXP, with a mean of 2.49 (95%CI: 2.25, 2.73) MPa.m1/2 compared to a mean of 2.13 (95%CI: 1.95, 2.31) MPa.m1/2, (F(1,54) = 21.28; p < 0.001). This difference was particularly pronounced at 2 mm depths where the mean (95%CI) values were 2.72 (2.49, 2.95) for EXF and 1.90 (1.78, 2.02) for EXP (Interaction F(2,54) = 7.93; p < 0.001). Both materials performed similarly at the depths of 3 mm and 4 mm. The results for both materials were within the accepted fracture toughness values of dentine of 1.79–3.08 MPa.m1/2. Analysis showed crack deflection and bridging fibre behaviour. The optimal thickness at the cavity base for EXF was 2 mm and for EXP 4 mm. Crack deflection and bridging behaviour indicated that restorations incorporating sFRCs are not prone to catastrophic failure and confirmed that sFRCs have similar fracture toughness to dentine. sFRCs could be a suitable biomimetic material to replace dentine.
Fracture Toughness of Short Fibre-Reinforced Composites—In Vitro Study
The development of dental materials needs to be supported with sound evidence. This in vitro study aimed to measure the fracture toughness of a short fibre-reinforced composite (sFRC), at differing thicknesses. In this study, 2 mm, 3 mm and 4 mm depths of sFRC were prepared. Using ISO4049, each preparation was tested to failure. A total of 60 samples were tested: 10 samples for each combination of sFRC and depth. Fractured samples were viewed, and outcomes were analysed. EXF showed greater toughness than EXP, with a mean of 2.49 (95%CI: 2.25, 2.73) MPa.m1/2 compared to a mean of 2.13 (95%CI: 1.95, 2.31) MPa.m1/2, (F(1,54) = 21.28; p < 0.001). This difference was particularly pronounced at 2 mm depths where the mean (95%CI) values were 2.72 (2.49, 2.95) for EXF and 1.90 (1.78, 2.02) for EXP (Interaction F(2,54) = 7.93; p < 0.001). Both materials performed similarly at the depths of 3 mm and 4 mm. The results for both materials were within the accepted fracture toughness values of dentine of 1.79–3.08 MPa.m1/2. Analysis showed crack deflection and bridging fibre behaviour. The optimal thickness at the cavity base for EXF was 2 mm and for EXP 4 mm. Crack deflection and bridging behaviour indicated that restorations incorporating sFRCs are not prone to catastrophic failure and confirmed that sFRCs have similar fracture toughness to dentine. sFRCs could be a suitable biomimetic material to replace dentine.
Fracture Toughness of Short Fibre-Reinforced Composites—In Vitro Study
Kamourieh, Noor (author) / Faigenblum, Maurice (author) / Blizard, Robert (author) / Leung, Albert (author) / Fine, Peter (author)
2024-11-02
Materials , 17 (21) , Article 5368. (2024)
Article (Journal)
Electronic Resource
English
Fracture toughness of short carbon fibre reinforced thermoplastic polyimide
British Library Online Contents | 1994
|The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites
British Library Online Contents | 2008
|Fracture toughness of fiber reinforced composites
TIBKAT | 1970
|Fracture behavior of short glass fibre and short carbon fibre reinforced polypropylene composites
British Library Online Contents | 2002
|