A platform for research: civil engineering, architecture and urbanism
An Improved 2DOF Elastokinematic Surrogate Model for Continuous Motion Prediction and Visualisation of Forearm Pro-and Supination for Surgical Planning
Forearm rotation (pro-/supination) involves a non-trivial combination of rotation and translation of two bones, namely, radius and ulna, relatively to each other. Early works regarded this relative motion as a rotation about a fixed (skew) axis. However, this assumption turns out not to be exact. This thesis regards a spatial-loop surrogate mechanism involving two degrees of freedom with an elastic coupling for better forearm motion prediction. In addition, the influence of the bone morphology and position of elbow on kinematics are also considered. The model parameters are not measured directly from the anatomical components, but are fitted by reducing the errors between predicted and measured values in an optimization loop. For non-invasive measurement of bone position, magnetic resonance imaging (MRI) is employed. We present a method to self-calibrate the arm position in the MRI scanning tube and to fit the model parameters from a few, coarse MRI scans. Results show a good concordance between measurement and simulation. Moreover, the minimum distance changing between bones during forearm rotation is elucidated, which is not yet proved in anatomical and clinical literatures. The minimum distance is calculated by searching for the global shortest distance between bone contours on ulna and radius by a two-level selection and a following multidimensional Newton-Raphson algorithm. To this end, the methodology is extended from healthy bones to deformed arms and an angulated forearm model is developed. The 3D angulated bone geometry is obtained by manually separating the bone structure at the broken position, and the minimum distance and the range of motion of fractured forearms are analyzed. As shown for a single case validation, simulated results show very small deviations from anatomical data. Furthermore, the simulations discussed above are visualized using interactive interfaces, which facilitates the application of the model in clinical planning. ; Die Unterarmrotation beinhaltet eine nicht triviale ...
An Improved 2DOF Elastokinematic Surrogate Model for Continuous Motion Prediction and Visualisation of Forearm Pro-and Supination for Surgical Planning
Forearm rotation (pro-/supination) involves a non-trivial combination of rotation and translation of two bones, namely, radius and ulna, relatively to each other. Early works regarded this relative motion as a rotation about a fixed (skew) axis. However, this assumption turns out not to be exact. This thesis regards a spatial-loop surrogate mechanism involving two degrees of freedom with an elastic coupling for better forearm motion prediction. In addition, the influence of the bone morphology and position of elbow on kinematics are also considered. The model parameters are not measured directly from the anatomical components, but are fitted by reducing the errors between predicted and measured values in an optimization loop. For non-invasive measurement of bone position, magnetic resonance imaging (MRI) is employed. We present a method to self-calibrate the arm position in the MRI scanning tube and to fit the model parameters from a few, coarse MRI scans. Results show a good concordance between measurement and simulation. Moreover, the minimum distance changing between bones during forearm rotation is elucidated, which is not yet proved in anatomical and clinical literatures. The minimum distance is calculated by searching for the global shortest distance between bone contours on ulna and radius by a two-level selection and a following multidimensional Newton-Raphson algorithm. To this end, the methodology is extended from healthy bones to deformed arms and an angulated forearm model is developed. The 3D angulated bone geometry is obtained by manually separating the bone structure at the broken position, and the minimum distance and the range of motion of fractured forearms are analyzed. As shown for a single case validation, simulated results show very small deviations from anatomical data. Furthermore, the simulations discussed above are visualized using interactive interfaces, which facilitates the application of the model in clinical planning. ; Die Unterarmrotation beinhaltet eine nicht triviale ...
An Improved 2DOF Elastokinematic Surrogate Model for Continuous Motion Prediction and Visualisation of Forearm Pro-and Supination for Surgical Planning
Xu, Jing (author) / Kecskeméthy, Andrés
2014-01-28
Theses
Electronic Resource
English
Analytical study of wind-rain-induced cable vibration: 2DOF model
British Library Online Contents | 2003
|Motion Prediction Methods for Surrogate Safety Analysis
British Library Online Contents | 2013
|Design of a 2DOF Vibrational Energy Harvesting Device
British Library Online Contents | 2011
|Elsevier | 2025
|