A platform for research: civil engineering, architecture and urbanism
Design Methods To Control Violent Pillar Failures In Room-And- Pillar Mines - Synopsis
The sudden, violent collapse of large areas of room-and-pillar mines poses a special hazard for miners and mine operators. This type of failure, termed a 'cascading pillar failure' (CPF), occurs when one pillar in a mine layout fails, transferring its load to neighbouring pillars, which causes them to fail, and so forth. Recent examples of this kind of failure in coal, metal and nonmetal mines in the U.S.A. are documented. Mining engineers can limit the danger presented by these failures through improved mine design practices. Whether failure occurs in a slow, non-violent manner or in a rapid, violent manner is governed by the local mine stiffness stability criterion. This stability criterion is used as the basis for three design approaches to control cascading pillar failure in room-and-pillar mines-the containment approach, the prevention approach and the full extraction mining approach. These design approaches are illustrated with practical examples for coal mining at shallow depth. Cascading pillar failure {CPF) in room-and-pillar mines can go by many other names, such as `progressive pillar failure', `massive pillar collapse', 'domino-type failure' or 'pillar run'. In this kind of failure when one pillar collapses the load that it carried transfers rapidly to its neighbours, causing them to fail, and so forth. This failure mechanism can lead to the rapid collapse of very large mine areas. In mild cases only a few tens of pillars might fail; in extreme cases, however, hundreds, even thousands, of pillars can fail. CPF can have catastrophic effects on a mine, and sometimes these effects pose a greater risk to health and safety than the underlying ground-control problem. Usually, the CPF induces a devastating air blast as a consequence of the displacement of air from the collapse area. An air blast can disrupt the ventilation system totally by destroying ventilation stoppings, seals and fan housings. Flying debris can seriously injure or kill mining personnel. The CPF might also fracture a large volume of rock ...
Design Methods To Control Violent Pillar Failures In Room-And- Pillar Mines - Synopsis
The sudden, violent collapse of large areas of room-and-pillar mines poses a special hazard for miners and mine operators. This type of failure, termed a 'cascading pillar failure' (CPF), occurs when one pillar in a mine layout fails, transferring its load to neighbouring pillars, which causes them to fail, and so forth. Recent examples of this kind of failure in coal, metal and nonmetal mines in the U.S.A. are documented. Mining engineers can limit the danger presented by these failures through improved mine design practices. Whether failure occurs in a slow, non-violent manner or in a rapid, violent manner is governed by the local mine stiffness stability criterion. This stability criterion is used as the basis for three design approaches to control cascading pillar failure in room-and-pillar mines-the containment approach, the prevention approach and the full extraction mining approach. These design approaches are illustrated with practical examples for coal mining at shallow depth. Cascading pillar failure {CPF) in room-and-pillar mines can go by many other names, such as `progressive pillar failure', `massive pillar collapse', 'domino-type failure' or 'pillar run'. In this kind of failure when one pillar collapses the load that it carried transfers rapidly to its neighbours, causing them to fail, and so forth. This failure mechanism can lead to the rapid collapse of very large mine areas. In mild cases only a few tens of pillars might fail; in extreme cases, however, hundreds, even thousands, of pillars can fail. CPF can have catastrophic effects on a mine, and sometimes these effects pose a greater risk to health and safety than the underlying ground-control problem. Usually, the CPF induces a devastating air blast as a consequence of the displacement of air from the collapse area. An air blast can disrupt the ventilation system totally by destroying ventilation stoppings, seals and fan housings. Flying debris can seriously injure or kill mining personnel. The CPF might also fracture a large volume of rock ...
Design Methods To Control Violent Pillar Failures In Room-And- Pillar Mines - Synopsis
Inst Min Metall, Trans, Sect A: Min Ind 1997 Sep-Dec; 106:A124-A132
Miscellaneous
Electronic Resource
English
DDC:
624
Subsidence prediction in shallow room and pillar mines
Online Contents | 1986
|Simulation of cascading pillar failure in room-and-pillar mines using boundary-element-method
British Library Conference Proceedings | 1996
|Behaviour of abandoned room and pillar mines in Illinois
Online Contents | 1989
|Behaviour of abandoned room and pillar mines in Illinois
Online Contents | 1989
|Robust Design of Pillar Arrangement for Safe Room-and-Pillar Mining Method
Online Contents | 2018
|