A platform for research: civil engineering, architecture and urbanism
Durability Assessment of Structural Sealant Glazing Systems applying a Performance Test Method
During the service life of a Structural Sealant Glazing (SSG) facade, its silicone bond is exposed to climatic, chemical, and mechanical loads. While current durability assessment methods schedule separate test programmes for accelerated weathering and fatigue, the presented test applies mechanical loading and weather cycling simultaneously to simulate 50 years of use. Specifically designed medium-scale system specimens resemble a common SSG-bond. Displacement-controlled sinusoidal load cycles in two load directions subject these specimens to tensile, compression and shear loads. Weathering comprises temperature and humidity cycles, UV-radiation, and application of water and detergent. During testing, the forces transmitted by the system specimens are continuously measured for performance assessment. The resulting system response reveals mechanical performance characteristics like elastic moduli and dissipated energies which decrease during exposure, indicating stress relaxation and degradation. Two common structural sealants were tested. After testing, sections of the system specimens were subjected to tensile and shear tests for mechanical characterisation. Strengths and moduli are notably reduced by combined loading compared to those of reference and weathered specimens. Hardness and visual inspections of the bond correlate with the performance and bond characteristics. The approach introduced in this article provides a basis for life cycle assessment of SSG-systems.
Durability Assessment of Structural Sealant Glazing Systems applying a Performance Test Method
During the service life of a Structural Sealant Glazing (SSG) facade, its silicone bond is exposed to climatic, chemical, and mechanical loads. While current durability assessment methods schedule separate test programmes for accelerated weathering and fatigue, the presented test applies mechanical loading and weather cycling simultaneously to simulate 50 years of use. Specifically designed medium-scale system specimens resemble a common SSG-bond. Displacement-controlled sinusoidal load cycles in two load directions subject these specimens to tensile, compression and shear loads. Weathering comprises temperature and humidity cycles, UV-radiation, and application of water and detergent. During testing, the forces transmitted by the system specimens are continuously measured for performance assessment. The resulting system response reveals mechanical performance characteristics like elastic moduli and dissipated energies which decrease during exposure, indicating stress relaxation and degradation. Two common structural sealants were tested. After testing, sections of the system specimens were subjected to tensile and shear tests for mechanical characterisation. Strengths and moduli are notably reduced by combined loading compared to those of reference and weathered specimens. Hardness and visual inspections of the bond correlate with the performance and bond characteristics. The approach introduced in this article provides a basis for life cycle assessment of SSG-systems.
Durability Assessment of Structural Sealant Glazing Systems applying a Performance Test Method
Wallau, Wilma (author) / Recknagel, Christoph (author)
2020-01-01
Article (Journal)
Electronic Resource
English
DDC:
624
TIBKAT | 2023
|Failures: Structural Sealant Glazing
British Library Online Contents | 1996
|Evaluation of Structural Performance of Aged Structural Glazing Sealant
British Library Conference Proceedings | 2018
|Reliability Assessment of Structural Sealant Durability
British Library Conference Proceedings | 2015
|Advanced Evaluation of Structural Sealant Glazing Systems by a New System Test Approach
British Library Conference Proceedings | 2015
|