A platform for research: civil engineering, architecture and urbanism
Recent developments in the optimization of the bulk heterojunction morphology of polymer: Fullerene solar cells
Organic photovoltaic (OPV) devices, made with semiconducting polymers, have recently attained a power conversion efficiency (PCE) over 14% in single junction cells and over 17% in tandem cells. These high performances, together with the suitability of the technology to inexpensive large-scale manufacture, over lightweight and flexible plastic substrates using roll-to-roll (R2R) processing, place the technology amongst the most promising for future harvesting of solar energy. Although OPVs using non-fullerene acceptors have recently outperformed their fullerene-based counterparts, the research in the development of new fullerenes and in the improvement of the bulk-heterojunction (BHJ) morphology and device efficiency of polymer:fullerene solar cells remains very active. In this review article, the most relevant research works performed over the last 3 years, that is, since the year 2016 onwards, in the field of fullerene-based polymer solar cells based on the copolymers PTB7, PTB7-Th (also known as PBDTTT-EFT) and PffBT4T-2OD, are presented and discussed. This review is primarily focused on studies that involve the improvement of the BHJ morphology, efficiency and stability of small active area devices (typically < 15 mm 2 ), through the use of different processing strategies such as the use of different fullerene acceptors, different processing solvents and additives and different thermal treatments. ; HG thanks Fundação para a Ciência e a Tecnologia (FCT) for a PhD scholarship (SFRH/BD/103009/ 2014). FF thanks Fundação para a Ciência e a Tecnologia (FCT) for the financial support to QOPNA (FCT UID/QUI/00062/2013). GB and AM are thankful to POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy—UID/EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds, through FCT—Fundação para a Ciência e a Tecnologia and NORTE-01-0145-FEDER-000005—LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work also received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 687008. HG and JCV acknowledge funding by National Funds through FCT—Portuguese Foundation for Science and Technology, Reference UID/CTM/50025/2013 and FEDER funds through the COMPETE 2020 Programme under the project number POCI-01-0145-FEDER-007688 (i3N). ; info:eu-repo/semantics/publishedVersion
Recent developments in the optimization of the bulk heterojunction morphology of polymer: Fullerene solar cells
Organic photovoltaic (OPV) devices, made with semiconducting polymers, have recently attained a power conversion efficiency (PCE) over 14% in single junction cells and over 17% in tandem cells. These high performances, together with the suitability of the technology to inexpensive large-scale manufacture, over lightweight and flexible plastic substrates using roll-to-roll (R2R) processing, place the technology amongst the most promising for future harvesting of solar energy. Although OPVs using non-fullerene acceptors have recently outperformed their fullerene-based counterparts, the research in the development of new fullerenes and in the improvement of the bulk-heterojunction (BHJ) morphology and device efficiency of polymer:fullerene solar cells remains very active. In this review article, the most relevant research works performed over the last 3 years, that is, since the year 2016 onwards, in the field of fullerene-based polymer solar cells based on the copolymers PTB7, PTB7-Th (also known as PBDTTT-EFT) and PffBT4T-2OD, are presented and discussed. This review is primarily focused on studies that involve the improvement of the BHJ morphology, efficiency and stability of small active area devices (typically < 15 mm 2 ), through the use of different processing strategies such as the use of different fullerene acceptors, different processing solvents and additives and different thermal treatments. ; HG thanks Fundação para a Ciência e a Tecnologia (FCT) for a PhD scholarship (SFRH/BD/103009/ 2014). FF thanks Fundação para a Ciência e a Tecnologia (FCT) for the financial support to QOPNA (FCT UID/QUI/00062/2013). GB and AM are thankful to POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy—UID/EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds, through FCT—Fundação para a Ciência e a Tecnologia and NORTE-01-0145-FEDER-000005—LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work also received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 687008. HG and JCV acknowledge funding by National Funds through FCT—Portuguese Foundation for Science and Technology, Reference UID/CTM/50025/2013 and FEDER funds through the COMPETE 2020 Programme under the project number POCI-01-0145-FEDER-007688 (i3N). ; info:eu-repo/semantics/publishedVersion
Recent developments in the optimization of the bulk heterojunction morphology of polymer: Fullerene solar cells
Gaspar, Hugo (author) / Figueira, Flávio (author) / Pereira, Luiz (author) / Mendes, Adélio (author) / Viana, J. C. (author) / Bernardo, Gabriel (author)
2018-12-16
doi:10.3390/ma11122560
Article (Journal)
Electronic Resource
English
DDC:
690
Polymer-Fullerene Bulk-Heterojunction Solar Cells
British Library Online Contents | 2010
|Polymer-Fullerene Bulk-Heterojunction Solar Cells
British Library Online Contents | 2009
|Polymer-Fullerene Bulk Heterojunction Solar Cells
British Library Online Contents | 2005
|British Library Online Contents | 2014
|British Library Online Contents | 2005
|