A platform for research: civil engineering, architecture and urbanism
Multi-Eigenmode Control for Improved Tracking Speed in Multifrequency Atomic Force Microscopy
Die Sensoren von Rasterkraftmikroskopen sind mechanische Schwinger, die zur zeitgleichen Aufnahmevon Topographie und Materialeigenschaften genutzt werden können. Besonders wichtig sinddie Bildrastergeschwindigkeit und Kraftsensitivität, die oft einen Kompromiss benötigen. In dieserArbeit wird ein neuartiger Multi-Eigenmode Kompensator basierend auf einem Zustandsschätzervorgestellt, der die dynamischen Eigenschaften jeder Cantilever-Resonanz unabhängig voneinandermodifizieren kann. Dargelegt wird die Modellierung, Kompensator-Design und Implementierungsstrategiein ein digitales System. Als Erstes wird der Kompensator zur Modifikation desQ Faktors einzelner Eigenmoden genutzt. Somit kann die Abbildungsrate um das 20-fache erhöhtwerden. Die Modifikation der natürlichen Frequenz erlaubt die Abbildung von Proben mitvollständig verschobenen Resonanzen. Moderne Mehrfachfrequenz-Abbildungsverfahren nutzenhöheren Eigenmoden, um bessere Abbildungsraten und Materialsensitivitäten zu erreichen. Beieiner Methode werden die angeregten höheren Harmonischen extrahiert, die beim Rastern einerOberfläche im Fourier-Spektrum entstehen. Eine andere Methode regt die erste und höhere Eigenmodengleichzeitig an. In Experimenten wird der Kompensator in Kombination mit beiden Abbildungsverfahrengenutzt, um speziell den Q Faktor der ersten beiden transversalen Eigenmoden gleichzeitigzu beeinflussen. Experimente zeigen, dass beste Abbildungsraten und Materialkontrastemit geringen Q Faktoren in der ersten und hohen Q Faktoren in der zweiten Eigenmode erreichtwerden. Eine Erweiterung des Kompensators erlaubt die Hochgeschwindigkeits-Demodulationvon Cantilever-Amplituden ohne Einsatz eines Lock-in Verstärkers, was anhand von Abbildungenmit der ersten Eigenmode gezeigt wird. Eine weitere Möglichkeit zur Verbesserung des Materialkontrastesbasiert auf der strukturellen Modifikation des Cantilevers. Mit Hilfe einer Ionenfeinstrahlanlagewird Material an bestimmten Bereichen des Cantilevers entfernt, so dass die erste undhöheren Eigenmoden ...
Multi-Eigenmode Control for Improved Tracking Speed in Multifrequency Atomic Force Microscopy
Die Sensoren von Rasterkraftmikroskopen sind mechanische Schwinger, die zur zeitgleichen Aufnahmevon Topographie und Materialeigenschaften genutzt werden können. Besonders wichtig sinddie Bildrastergeschwindigkeit und Kraftsensitivität, die oft einen Kompromiss benötigen. In dieserArbeit wird ein neuartiger Multi-Eigenmode Kompensator basierend auf einem Zustandsschätzervorgestellt, der die dynamischen Eigenschaften jeder Cantilever-Resonanz unabhängig voneinandermodifizieren kann. Dargelegt wird die Modellierung, Kompensator-Design und Implementierungsstrategiein ein digitales System. Als Erstes wird der Kompensator zur Modifikation desQ Faktors einzelner Eigenmoden genutzt. Somit kann die Abbildungsrate um das 20-fache erhöhtwerden. Die Modifikation der natürlichen Frequenz erlaubt die Abbildung von Proben mitvollständig verschobenen Resonanzen. Moderne Mehrfachfrequenz-Abbildungsverfahren nutzenhöheren Eigenmoden, um bessere Abbildungsraten und Materialsensitivitäten zu erreichen. Beieiner Methode werden die angeregten höheren Harmonischen extrahiert, die beim Rastern einerOberfläche im Fourier-Spektrum entstehen. Eine andere Methode regt die erste und höhere Eigenmodengleichzeitig an. In Experimenten wird der Kompensator in Kombination mit beiden Abbildungsverfahrengenutzt, um speziell den Q Faktor der ersten beiden transversalen Eigenmoden gleichzeitigzu beeinflussen. Experimente zeigen, dass beste Abbildungsraten und Materialkontrastemit geringen Q Faktoren in der ersten und hohen Q Faktoren in der zweiten Eigenmode erreichtwerden. Eine Erweiterung des Kompensators erlaubt die Hochgeschwindigkeits-Demodulationvon Cantilever-Amplituden ohne Einsatz eines Lock-in Verstärkers, was anhand von Abbildungenmit der ersten Eigenmode gezeigt wird. Eine weitere Möglichkeit zur Verbesserung des Materialkontrastesbasiert auf der strukturellen Modifikation des Cantilevers. Mit Hilfe einer Ionenfeinstrahlanlagewird Material an bestimmten Bereichen des Cantilevers entfernt, so dass die erste undhöheren Eigenmoden ...
Multi-Eigenmode Control for Improved Tracking Speed in Multifrequency Atomic Force Microscopy
Schuh, Andreas (author) / Rangelow, Ivo W. / Youcef-Toumi, Kamal / Köhler, Ulrich
2015-12-21
Theses
Electronic Resource
English
multi-eigenmode control , DNB Meldung , Thüringer Pflichtexemplare , amplitude demodulation , atomic force microscopy , active cantilever probes , für Harvesting bereitgestellt , enhanced material contrast mapping , cantilever topology optimization , fpga , Doktorarbeit , cantilever harmonics , metrology , thesis , ddc:530 , Klasse A
Tailored Microcantilever Optimization for Multifrequency Force Microscopy
Wiley | 2023
|British Library Online Contents | 1995
|Nanomanipulator Based on a High-Speed Atomic Force Microscopy
British Library Online Contents | 2012
|British Library Online Contents | 2004
|Atomic Force Microscopy/Scanning Tunneling Microscopy
TIBKAT | 1994
|