A platform for research: civil engineering, architecture and urbanism
Rheology of the mortar phase of concrete with crushed aggregate
In Sweden, concrete has traditionally been manufactured with glaciofluvial deposits as fine aggregate. In 2004 the production of this aggregate was approximately 21 million tons. Due to environmental reasons and local shortage of this natural resource there exists a goal to reduce the production to 12 million tons in year 2010. In order to compensate for the reduced production an alternative material which can be used as replacement has to be found. Aggregate from crushed bedrock is an alternative which is locally available and found in sufficient amounts. However, the characteristics of this type of aggregate generally differ from the ones of glaciofluvial fine aggregate and are known to generate concrete with higher water demand and lower workability. In order to facilitate a changeover to crushed fine aggregate, it is important to achieve a better understanding of the influence of crushed fine aggregate characteristics on the workability of concrete. The properties of the mortar phase of concrete influence the workability of concrete. The study of the mortar phase of concrete with crushed fine aggregate can therefore be valuable in predicting the influence of the fine aggregate characteristics on concrete workability. The aim of this licentiate thesis was to clarify the influence of the characteristics of crushed fine aggregate (0-2 mm) on the rheological properties of mortars. This included studies of the effect of aggregate shape, quality and amount of fines, washed fine aggregate and superplasticizer addition. The experimental work was divided into three different parts, i.e., zeta potential study, micromortar and mortar rheology. In the zeta potential part, the interaction between different fines and a common type of superplasticizer was studied. The results indicate that the superplasticizer is preferentially adsorbed on biotite rich fines. In the micromortar part, the fines fraction of different fine aggregates was studied separately in order to evaluate the influence of their particle shape, specific ...
Rheology of the mortar phase of concrete with crushed aggregate
In Sweden, concrete has traditionally been manufactured with glaciofluvial deposits as fine aggregate. In 2004 the production of this aggregate was approximately 21 million tons. Due to environmental reasons and local shortage of this natural resource there exists a goal to reduce the production to 12 million tons in year 2010. In order to compensate for the reduced production an alternative material which can be used as replacement has to be found. Aggregate from crushed bedrock is an alternative which is locally available and found in sufficient amounts. However, the characteristics of this type of aggregate generally differ from the ones of glaciofluvial fine aggregate and are known to generate concrete with higher water demand and lower workability. In order to facilitate a changeover to crushed fine aggregate, it is important to achieve a better understanding of the influence of crushed fine aggregate characteristics on the workability of concrete. The properties of the mortar phase of concrete influence the workability of concrete. The study of the mortar phase of concrete with crushed fine aggregate can therefore be valuable in predicting the influence of the fine aggregate characteristics on concrete workability. The aim of this licentiate thesis was to clarify the influence of the characteristics of crushed fine aggregate (0-2 mm) on the rheological properties of mortars. This included studies of the effect of aggregate shape, quality and amount of fines, washed fine aggregate and superplasticizer addition. The experimental work was divided into three different parts, i.e., zeta potential study, micromortar and mortar rheology. In the zeta potential part, the interaction between different fines and a common type of superplasticizer was studied. The results indicate that the superplasticizer is preferentially adsorbed on biotite rich fines. In the micromortar part, the fines fraction of different fine aggregates was studied separately in order to evaluate the influence of their particle shape, specific ...
Rheology of the mortar phase of concrete with crushed aggregate
Westerholm, Mikael (author)
2006-01-01
2006:06
Theses
Electronic Resource
English
INFLUENCE OF FINES FROM CRUSHED AGGREGATE ON MICRO MORTAR RHEOLOGY
British Library Conference Proceedings | 2003
|Micro Fines from Crushed Aggregate, Characteristics and its Influence on Micro Mortar Rheology
British Library Conference Proceedings | 2005
|Concrete with crushed aggregate
UB Braunschweig | 1981
|Concrete with crushed aggregate
TIBKAT | 1981
|