A platform for research: civil engineering, architecture and urbanism
Determining Retrofit Technologies for Building Energy Performance
학위논문(석사)--서울대학교 대학원 :공과대학 건축학과,2019. 8. 박문서. ; Worldwide the building sector is responsible for consuming more than 36% of the final global energy and produces 39% of carbon dioxide emissions. Accordingly, sustainable retrofit is an important method to achieve energy reduction and sustainable development. However, the lack of information on retrofit technologies and their benefits trigger stakeholder’s opposition to retrofit actions. The Energy Performance Certificate tool can be used to overcome the knowledge gap and boost energy saving by strengthening its recommendation report with retrofit technologies for energy performance. Therefore, this paper attempts to determine the best retrofit technologies to be highlighted in the Energy Performance Certificate’s recommendation report, by considering stakeholder's opinion. For this purpose, a model based on Quality Function Deployment has been developed. The model analyzes the data regarding stakeholder’s expectations when deciding to retrofit, and the potential retrofit technologies used. In order to validate the applicability of the proposed model, a case study was conducted in Romania. The findings are expected to contribute to improving the quality of the Energy Performance Certificate, as reflecting stakeholder’s opinion combined with sustainable concepts to achieve significant energy savings. ; Table of contents Chapter 1. Introduction 1 1.1 Research Background 1 1.2 Problem statement 5 1.3 Research Objectives 6 1.4 Research Process 7 Chapter 2. Preliminary study 9 2.1 Sustainable Building Retrofit 9 2.2 Critical factors in the success of a sustainable retrofit process 12 2.3 Energy Performance Certificates 14 2.4 Previous research on the EPC’s Recommendation Report 17 2.5 Quality Function Deployment 21 2.6 Summary 25 Chapter 3. Model development 27 3.1 House of Quality model for sustainable retrofit 27 3.2 Developing the House of Quality model process ……………….30 3.3 Summary 38 Chapter 4. Case Studies 39 4.1 Background of Case Study 39 4.2 Survey 41 4.3 Findings of Case Study 46 4.4 Discussions 58 4.5 Summary 61 Chapter 5. Conclusions 62 5.1 Research Summary 62 5.2 Contributions 63 5.3 Further Research 64 Bibliography 65 Appendix A – Stakeholder’s Survey Questionnaire 71 Appendix B – Stakeholder’s Survey Results 74 Appendix C– Accredited Energy Auditor’s Survey Questionnaire 77 Appendix D– Accredited Energy Auditor’s Survey Results 85 ; Master
Determining Retrofit Technologies for Building Energy Performance
학위논문(석사)--서울대학교 대학원 :공과대학 건축학과,2019. 8. 박문서. ; Worldwide the building sector is responsible for consuming more than 36% of the final global energy and produces 39% of carbon dioxide emissions. Accordingly, sustainable retrofit is an important method to achieve energy reduction and sustainable development. However, the lack of information on retrofit technologies and their benefits trigger stakeholder’s opposition to retrofit actions. The Energy Performance Certificate tool can be used to overcome the knowledge gap and boost energy saving by strengthening its recommendation report with retrofit technologies for energy performance. Therefore, this paper attempts to determine the best retrofit technologies to be highlighted in the Energy Performance Certificate’s recommendation report, by considering stakeholder's opinion. For this purpose, a model based on Quality Function Deployment has been developed. The model analyzes the data regarding stakeholder’s expectations when deciding to retrofit, and the potential retrofit technologies used. In order to validate the applicability of the proposed model, a case study was conducted in Romania. The findings are expected to contribute to improving the quality of the Energy Performance Certificate, as reflecting stakeholder’s opinion combined with sustainable concepts to achieve significant energy savings. ; Table of contents Chapter 1. Introduction 1 1.1 Research Background 1 1.2 Problem statement 5 1.3 Research Objectives 6 1.4 Research Process 7 Chapter 2. Preliminary study 9 2.1 Sustainable Building Retrofit 9 2.2 Critical factors in the success of a sustainable retrofit process 12 2.3 Energy Performance Certificates 14 2.4 Previous research on the EPC’s Recommendation Report 17 2.5 Quality Function Deployment 21 2.6 Summary 25 Chapter 3. Model development 27 3.1 House of Quality model for sustainable retrofit 27 3.2 Developing the House of Quality model process ……………….30 3.3 Summary 38 Chapter 4. Case Studies 39 4.1 Background of Case Study 39 4.2 Survey 41 4.3 Findings of Case Study 46 4.4 Discussions 58 4.5 Summary 61 Chapter 5. Conclusions 62 5.1 Research Summary 62 5.2 Contributions 63 5.3 Further Research 64 Bibliography 65 Appendix A – Stakeholder’s Survey Questionnaire 71 Appendix B – Stakeholder’s Survey Results 74 Appendix C– Accredited Energy Auditor’s Survey Questionnaire 77 Appendix D– Accredited Energy Auditor’s Survey Results 85 ; Master
Determining Retrofit Technologies for Building Energy Performance
Benzar, Bianca-Elena (author) / 박문서 / 비앙카 엘레나 / 공과대학 건축학과
2019-01-01
000000000040▲000000000041▲000000156399▲
Theses
Electronic Resource
English
DDC:
690
Determining retrofit technologies for building energy performance
Taylor & Francis Verlag | 2020
|Understanding and bridging the energy performance gap in building retrofit
BASE | 2017
|