A platform for research: civil engineering, architecture and urbanism
Individual-based modeling and predictive simulation of fungal infection dynamics
The human-pathogenic fungus Aspergillus fumigatus causes life-threatening infections in immunocompromised patients and poses increasing challenges for the modern medicine. A. fumigatus is ubiquitously present and disseminates via small conidia over the air of the athmosphere. Each human inhales several hundreds to thousands of conidia every day. The small size of conidia allows them to pass into the alveoli of the lung, where primary infections with A. fumigatus are typically observed. In alveoli, the interaction between fungi and the innate immune system of the host takes place. This interaction is the core topic of this thesis and covered by mathematical modeling and computer simulations. Since in vivo laboratory studies of A. fumigatus infections under physiological conditions is hard to realize a modular software framework was developed and implemented, which allows for spatio-temporal agent-based modeling and simulation. A to-scale A. fumigatus infection model in a typical human alveolus was developed in order to simulate and analyze the infection scenario under physiological conditions. The process of conidial discovery by alveolar macrophages was modeled and simulated with different migration modes and different parameter configurations. It could be shown that chemotactic migration was required to find the pathogen before the onset of germination. A second model took advantage of evolutionary game theory on graphs. Here, the course of infection was modeled as a consecutive sequence of evolutionary games related to the complement system, alveolar macrophages and polymorphonuclear neutrophilic granulocytes. The results revealed a central immunoregulatory role of alveolar macrophages. In the case of high infectious doses it was found that the host required fully active phagocytes, but in particular a qualitative response of quantitatively sufficient polymorphonuclear neutrophilic granulocytes. ; Der human-pathogene Schimmelpilz Aspergillus fumigatus verursacht tödliche Infektionen und Erkrankungen vorrangig ...
Individual-based modeling and predictive simulation of fungal infection dynamics
The human-pathogenic fungus Aspergillus fumigatus causes life-threatening infections in immunocompromised patients and poses increasing challenges for the modern medicine. A. fumigatus is ubiquitously present and disseminates via small conidia over the air of the athmosphere. Each human inhales several hundreds to thousands of conidia every day. The small size of conidia allows them to pass into the alveoli of the lung, where primary infections with A. fumigatus are typically observed. In alveoli, the interaction between fungi and the innate immune system of the host takes place. This interaction is the core topic of this thesis and covered by mathematical modeling and computer simulations. Since in vivo laboratory studies of A. fumigatus infections under physiological conditions is hard to realize a modular software framework was developed and implemented, which allows for spatio-temporal agent-based modeling and simulation. A to-scale A. fumigatus infection model in a typical human alveolus was developed in order to simulate and analyze the infection scenario under physiological conditions. The process of conidial discovery by alveolar macrophages was modeled and simulated with different migration modes and different parameter configurations. It could be shown that chemotactic migration was required to find the pathogen before the onset of germination. A second model took advantage of evolutionary game theory on graphs. Here, the course of infection was modeled as a consecutive sequence of evolutionary games related to the complement system, alveolar macrophages and polymorphonuclear neutrophilic granulocytes. The results revealed a central immunoregulatory role of alveolar macrophages. In the case of high infectious doses it was found that the host required fully active phagocytes, but in particular a qualitative response of quantitatively sufficient polymorphonuclear neutrophilic granulocytes. ; Der human-pathogene Schimmelpilz Aspergillus fumigatus verursacht tödliche Infektionen und Erkrankungen vorrangig ...
Individual-based modeling and predictive simulation of fungal infection dynamics
Pollmächer, Johannes (author) / Figge, Marc Thilo / Dittrich, Peter / Beilhack, Andreas
2017-01-01
Theses
Electronic Resource
English
Vehicle dynamics simulation for developing predictive longitudinal dynamics controllers
Automotive engineering | 2011
|Predictive dynamics: an optimization-based novel approach for human motion simulation
British Library Online Contents | 2010
|Biological control of wood decay against fungal infection
Online Contents | 2011
|