A platform for research: civil engineering, architecture and urbanism
Quantitative Risk Assessment of Wave Energy Technology
European Commission (2011) aims to reduce the greenhouse gas emission sby 85-95% by 2050 in comparison to 1990’s levels. Wave energy could be an important step to archiving this goal. This report aims to develop a quantitative risk assessment for the Uppsala University's wave energy converter. Failure rates have been collected from various databases and reports and have been processed accordingly in order to implement them in the risk analysis. CAPEX, OPEX and possible downtime windows have been estimated. A fault tree analysis (FTA) has estimated the total unavailability, unreliability and downtime. Furthermore an economical assessment model using Monte Carlo and the unreliability data from the FTA has been developed, estimating the expected LCOE and OPEX/WEC for parks consisting of 20, 100, and 200 WECs (wave energy converters). The result show that the O-ring seal has the largest impact on both the unavailability, and the economy of the OPEX/WEC. Second biggest contributor is the translator bearing failure. The study also shows that the CAPEX cost has to be reduced to make the LCOE competitive in comparison to other renewable sources. A comparison between the system unavailability and unreliability has also been done in terms of different component parameters.
Quantitative Risk Assessment of Wave Energy Technology
European Commission (2011) aims to reduce the greenhouse gas emission sby 85-95% by 2050 in comparison to 1990’s levels. Wave energy could be an important step to archiving this goal. This report aims to develop a quantitative risk assessment for the Uppsala University's wave energy converter. Failure rates have been collected from various databases and reports and have been processed accordingly in order to implement them in the risk analysis. CAPEX, OPEX and possible downtime windows have been estimated. A fault tree analysis (FTA) has estimated the total unavailability, unreliability and downtime. Furthermore an economical assessment model using Monte Carlo and the unreliability data from the FTA has been developed, estimating the expected LCOE and OPEX/WEC for parks consisting of 20, 100, and 200 WECs (wave energy converters). The result show that the O-ring seal has the largest impact on both the unavailability, and the economy of the OPEX/WEC. Second biggest contributor is the translator bearing failure. The study also shows that the CAPEX cost has to be reduced to make the LCOE competitive in comparison to other renewable sources. A comparison between the system unavailability and unreliability has also been done in terms of different component parameters.
Quantitative Risk Assessment of Wave Energy Technology
Ericsson, Emil (author) / Gregorson, Eric (author)
2018-01-01
Theses
Electronic Resource
English
DDC:
690
Quantitative Risk Assessment and Technology Transfer: Software Developments
British Library Conference Proceedings | 1992
|Rockfall Quantitative Risk Assessment
Wiley | 2013
|Quantitative Fire Risk Assessment
Wiley | 2008
|Quantitative Risk Assessment for Landslides
British Library Online Contents | 2002
|