A platform for research: civil engineering, architecture and urbanism
Hyper pooling private trips into high occupancy transit like attractive shared rides
The size of the solution space associated with the trip-matching problem has made the search for high-order ride-pooling prohibitive. We introduce hyper-pooled rides along with a method to identify them within urban demand patterns. Travellers of hyper-pooled rides walk to common pick-up points, travel with a shared vehicle along a sequence of stops and are dropped off at stops from which they walk to their destinations. While closely resembling classical mass transit, hyper-pooled rides are purely demand-driven, with itineraries (stop locations, sequences, timings) optimised for all co-travellers. For 2000 trips in Amsterdam the algorithm generated 40 hyper-pooled rides transporting 225 travellers. They would require 52.5 vehicle hours to travel solo, whereas in the hyper-pooled multi-stop rides, it is reduced sixfold to 9 vehicle hours only. This efficiency gain is made possible by achieving an average occupancy of 5.8 (and a maximum of 14) while remaining attractive for all co-travellers.
Hyper pooling private trips into high occupancy transit like attractive shared rides
The size of the solution space associated with the trip-matching problem has made the search for high-order ride-pooling prohibitive. We introduce hyper-pooled rides along with a method to identify them within urban demand patterns. Travellers of hyper-pooled rides walk to common pick-up points, travel with a shared vehicle along a sequence of stops and are dropped off at stops from which they walk to their destinations. While closely resembling classical mass transit, hyper-pooled rides are purely demand-driven, with itineraries (stop locations, sequences, timings) optimised for all co-travellers. For 2000 trips in Amsterdam the algorithm generated 40 hyper-pooled rides transporting 225 travellers. They would require 52.5 vehicle hours to travel solo, whereas in the hyper-pooled multi-stop rides, it is reduced sixfold to 9 vehicle hours only. This efficiency gain is made possible by achieving an average occupancy of 5.8 (and a maximum of 14) while remaining attractive for all co-travellers.
Hyper pooling private trips into high occupancy transit like attractive shared rides
Kucharski, Rafał (author) / Cats, Oded (author)
2024-01-01
Article (Journal)
Electronic Resource
English
Taylor & Francis Verlag | 2019
|Analysis of Trends in Transit Work Trips
Taylor & Francis Verlag | 1989
|Online Contents | 2011
ISTFA 2006 Rides Into Lone Star State
British Library Online Contents | 2006