A platform for research: civil engineering, architecture and urbanism
Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts
Agrivoltaic systems are becoming more popular as a critical technology for attaining several sustainable development goals such as affordable and clean energy, zero hunger, clean water and sanitation, and climate action. However, understanding the shading effects on crops is fundamental to choosing an optimal agrivoltaic system as a wrong choice could lead to severe crop reductions. In this study, fixed vertical, one-axis tracking, and two-axis tracking photovoltaic arrays for agrivoltaic applications are developed to analyse the shading conditions on the ground used for crop production. The models have shown remarkably similar accuracy compared to commercial software such as PVsyst® and SketchUp®. The developed models will help reduce the crop yield uncertainty under agrivoltaic systems by providing accurate photosynthetically active radiation distribution at the crop level. The distribution was further analysed using a light homogeneity index and calculating the yearly photosynthetically active radiation reduction. The homogeneity and photosynthetically active radiation reduction varied significantly depending on the agrivoltaic system design, from 91% to 95% and 11% to 34%, respectively. To identify the most suitable agrivoltaic system layout dependent on crop and geographical location, it is of fundamental importance to study the effect of shadings with distribution analysis.
Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts
Agrivoltaic systems are becoming more popular as a critical technology for attaining several sustainable development goals such as affordable and clean energy, zero hunger, clean water and sanitation, and climate action. However, understanding the shading effects on crops is fundamental to choosing an optimal agrivoltaic system as a wrong choice could lead to severe crop reductions. In this study, fixed vertical, one-axis tracking, and two-axis tracking photovoltaic arrays for agrivoltaic applications are developed to analyse the shading conditions on the ground used for crop production. The models have shown remarkably similar accuracy compared to commercial software such as PVsyst® and SketchUp®. The developed models will help reduce the crop yield uncertainty under agrivoltaic systems by providing accurate photosynthetically active radiation distribution at the crop level. The distribution was further analysed using a light homogeneity index and calculating the yearly photosynthetically active radiation reduction. The homogeneity and photosynthetically active radiation reduction varied significantly depending on the agrivoltaic system design, from 91% to 95% and 11% to 34%, respectively. To identify the most suitable agrivoltaic system layout dependent on crop and geographical location, it is of fundamental importance to study the effect of shadings with distribution analysis.
Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts
Zainali, Sebastian (author) / Lu, Silvia Ma (author) / Stridh, Bengt (author) / Avelin, Anders (author) / Amaducci, Stefano (author) / Colauzzi, Michele (author) / Campana, Pietro Elia (author)
doi:10.48550/arXiv.2208.04886
Paper
Electronic Resource
English
DDC:
690
Optimal solar dish field layouts for maximum collection and shading efficiencies
British Library Online Contents | 2017
|Agrivoltaic system success: A review of parameters that matter
American Institute of Physics | 2024
|