A platform for research: civil engineering, architecture and urbanism
A Comparative Evaluation of Deep Learning Techniques for Photovoltaic Panel Detection From Aerial Images
Solar energy production has significantly increased in recent years in the European Union (EU), accounting for 12% of the total in 2022. The growth in solar energy production can be attributed to the increasing adoption of solar photovoltaic (PV) panels, which have become cost-effective and efficient means of energy production, supported by government policies and incentives. The maturity of solar technologies has also led to a decrease in the cost of solar energy, making it more competitive with other energy sources. As a result, there is a growing need for efficient methods for detecting and mapping the locations of PV panels. Automated detection can in fact save time and resources compared to manual inspection. Moreover, the resulting information can also be used by governments, environmental agencies and other companies to track the adoption of renewable sources or to optimize energy distribution across the grid. However, building effective models to support the automated detection and mapping of solar photovoltaic (PV) panels presents several challenges, including the availability of high-resolution aerial imagery and high-quality, manually-verified labels and annotations. In this study, we address these challenges by first constructing a dataset of PV panels using very-high-resolution (VHR) aerial imagery, specifically focusing on the region of Piedmont in Italy. The dataset comprises 105 large-scale images, providing more than 9,000 accurate and detailed manual annotations, including additional attributes such as the PV panel category. We first conduct a comprehensive evaluation benchmark on the newly constructed dataset, adopting various well-established deep-learning techniques. Specifically, we experiment with instance and semantic segmentation approaches, such as Rotated Faster RCNN and Unet, comparing strengths and weaknesses on the task at hand. Second, we apply ad-hoc modifications to address the specific issues of this task, such as the wide range of scales of the installations and the sparsity of ...
A Comparative Evaluation of Deep Learning Techniques for Photovoltaic Panel Detection From Aerial Images
Solar energy production has significantly increased in recent years in the European Union (EU), accounting for 12% of the total in 2022. The growth in solar energy production can be attributed to the increasing adoption of solar photovoltaic (PV) panels, which have become cost-effective and efficient means of energy production, supported by government policies and incentives. The maturity of solar technologies has also led to a decrease in the cost of solar energy, making it more competitive with other energy sources. As a result, there is a growing need for efficient methods for detecting and mapping the locations of PV panels. Automated detection can in fact save time and resources compared to manual inspection. Moreover, the resulting information can also be used by governments, environmental agencies and other companies to track the adoption of renewable sources or to optimize energy distribution across the grid. However, building effective models to support the automated detection and mapping of solar photovoltaic (PV) panels presents several challenges, including the availability of high-resolution aerial imagery and high-quality, manually-verified labels and annotations. In this study, we address these challenges by first constructing a dataset of PV panels using very-high-resolution (VHR) aerial imagery, specifically focusing on the region of Piedmont in Italy. The dataset comprises 105 large-scale images, providing more than 9,000 accurate and detailed manual annotations, including additional attributes such as the PV panel category. We first conduct a comprehensive evaluation benchmark on the newly constructed dataset, adopting various well-established deep-learning techniques. Specifically, we experiment with instance and semantic segmentation approaches, such as Rotated Faster RCNN and Unet, comparing strengths and weaknesses on the task at hand. Second, we apply ad-hoc modifications to address the specific issues of this task, such as the wide range of scales of the installations and the sparsity of ...
A Comparative Evaluation of Deep Learning Techniques for Photovoltaic Panel Detection From Aerial Images
Arnaudo, E (author) / Blanco, G (author) / Monti, A (author) / Bianco, G (author) / Monaco, C (author) / Pasquali, P (author) / Dominici, F (author) / Arnaudo, E / Blanco, G / Monti, A
2023-01-01
Article (Journal)
Electronic Resource
English
DDC:
690
BASE | 2023
|Deep learning approaches to building rooftop thermal bridge detection from aerial images
DataCite | 2023
|