A platform for research: civil engineering, architecture and urbanism
A linearized DPLL calculus with learning
This paper describes the proof calculus LD for clausal propositional logic, which is a linearized form of the well-known DPLL calculus extended by clause learning. It is motivated by the demand to model how current SAT solvers built on clause learning are working, while abstracting from decision heuristics and implementation details. The calculus is proved sound and terminating. Further, it is shown that both the original DPLL calculus and the conflict-directed backtracking calculus with clause learning, as it is implemented in many current SAT solvers, are complete and proof-confluent instances of the LD calculus. ; Dieser Artikel beschreibt den Beweiskalkül LD für aussagenlogische Formeln in Klauselform. Dieser Kalkül ist eine um Klausellernen erweiterte linearisierte Variante des bekannten DPLL-Kalküls. Er soll dazu dienen, das Verhalten von auf Klausellernen basierenden SAT-Beweisern zu modellieren, wobei von Entscheidungsheuristiken und Implementierungsdetails abstrahiert werden soll. Es werden Korrektheit und Terminierung des Kalküls bewiesen. Weiterhin wird gezeigt, dass sowohl der ursprüngliche DPLL-Kalkül als auch der konfliktgesteuerte Rücksetzalgorithmus mit Klausellernen, wie er in vielen aktuellen SAT-Beweisern implementiert ist, vollständige und beweiskonfluente Spezialisierungen des LD-Kalküls sind.
A linearized DPLL calculus with learning
This paper describes the proof calculus LD for clausal propositional logic, which is a linearized form of the well-known DPLL calculus extended by clause learning. It is motivated by the demand to model how current SAT solvers built on clause learning are working, while abstracting from decision heuristics and implementation details. The calculus is proved sound and terminating. Further, it is shown that both the original DPLL calculus and the conflict-directed backtracking calculus with clause learning, as it is implemented in many current SAT solvers, are complete and proof-confluent instances of the LD calculus. ; Dieser Artikel beschreibt den Beweiskalkül LD für aussagenlogische Formeln in Klauselform. Dieser Kalkül ist eine um Klausellernen erweiterte linearisierte Variante des bekannten DPLL-Kalküls. Er soll dazu dienen, das Verhalten von auf Klausellernen basierenden SAT-Beweisern zu modellieren, wobei von Entscheidungsheuristiken und Implementierungsdetails abstrahiert werden soll. Es werden Korrektheit und Terminierung des Kalküls bewiesen. Weiterhin wird gezeigt, dass sowohl der ursprüngliche DPLL-Kalkül als auch der konfliktgesteuerte Rücksetzalgorithmus mit Klausellernen, wie er in vielen aktuellen SAT-Beweisern implementiert ist, vollständige und beweiskonfluente Spezialisierungen des LD-Kalküls sind.
A linearized DPLL calculus with learning
Arnold, Holger (author)
2007-11-02
Article (Journal)
Electronic Resource
English
Springer Verlag | 2023
|Urban Runoff by Linearized Subhydrographic Method
ASCE | 2021
|Linearized Poisson-Boltzmann Equation for Zwitterions
British Library Online Contents | 2006
|Pipeline network analysis by linearized simultaneous equations
Engineering Index Backfile | 1967
|British Library Online Contents | 2012
|