A platform for research: civil engineering, architecture and urbanism
Flexural strengthening of reinforced concrete beams with fabric reinforced cementitious mortar : effect of reinforcement ratios
The current state of North America’s infrastructure system is in dire straits. The cost of repair is estimated at over $3.6 trillion in the United States alone. An innovative and cost-effective method of repair and retrofitting is vital to close what has been referred to as the infrastructure gap. As an alternative to the current methods, fabric reinforced cementitious mortar (FRCM) is proposed to aid the civil engineering industry in removing this gap. Applied to structural members externally, FRCM is characterized by its ability to strengthen and rehabilitate these structures. This study set out to determine the flexural strength improvement of reinforced concrete (RC) beams with different reinforcement ratios, textile layers, fabric materials and anchorage methods. Ten full-scale (200 x 300 x 4000mm) RC beams (2 controls, 8 strengthened) were cast and tested under monotonic four-point bending conditions. Ultimate flexural capacity, pseudo-ductility, energy absorption, stiffness, and failure mode were taken as performance indicators. Results showed all FRCM strengthened beams failed in a similar way to their control counterparts and FRCM did not affect the pre-yielding stiffness or ductility of the strengthened beams. However, FRCM significantly improved the beams’ yield load and flexural capacity over the control. Flexural strength improved by up to 81% over the control. Strength improved with an increase in textile layers, and U-shaped strengthened specimens outperformed their soffit-strengthened equivalents. ; Applied Science, Faculty of ; Engineering, School of (Okanagan) ; Graduate
Flexural strengthening of reinforced concrete beams with fabric reinforced cementitious mortar : effect of reinforcement ratios
The current state of North America’s infrastructure system is in dire straits. The cost of repair is estimated at over $3.6 trillion in the United States alone. An innovative and cost-effective method of repair and retrofitting is vital to close what has been referred to as the infrastructure gap. As an alternative to the current methods, fabric reinforced cementitious mortar (FRCM) is proposed to aid the civil engineering industry in removing this gap. Applied to structural members externally, FRCM is characterized by its ability to strengthen and rehabilitate these structures. This study set out to determine the flexural strength improvement of reinforced concrete (RC) beams with different reinforcement ratios, textile layers, fabric materials and anchorage methods. Ten full-scale (200 x 300 x 4000mm) RC beams (2 controls, 8 strengthened) were cast and tested under monotonic four-point bending conditions. Ultimate flexural capacity, pseudo-ductility, energy absorption, stiffness, and failure mode were taken as performance indicators. Results showed all FRCM strengthened beams failed in a similar way to their control counterparts and FRCM did not affect the pre-yielding stiffness or ductility of the strengthened beams. However, FRCM significantly improved the beams’ yield load and flexural capacity over the control. Flexural strength improved by up to 81% over the control. Strength improved with an increase in textile layers, and U-shaped strengthened specimens outperformed their soffit-strengthened equivalents. ; Applied Science, Faculty of ; Engineering, School of (Okanagan) ; Graduate
Flexural strengthening of reinforced concrete beams with fabric reinforced cementitious mortar : effect of reinforcement ratios
Billows, Trevor Norman Stanley (author)
2016-01-01
Theses
Electronic Resource
English
DDC:
690
Textile Reinforced Mortar Based Flexural Strengthening Of Reinforced Concrete Beams
BASE | 2020
|Effectiveness of Fabric-Reinforced Cementitious Matrix in Strengthening Reinforced Concrete Beams
Online Contents | 2016
|Effectiveness of Fabric-Reinforced Cementitious Matrix in Strengthening Reinforced Concrete Beams
Online Contents | 2017
|