A platform for research: civil engineering, architecture and urbanism
Future Grid Load of the Residential Building Sector
The installation and operation of distributed energy resources in the form of photovoltaics, co-generation units, or batteries, and the electrification of the heat supply are seen as promising options to reduce greenhouse gas emissions of residential buildings. Nevertheless, their uptake significantly changes the interaction of the residential building stock with the electricity grid and the centralized supply infrastructure and questions their current design. Therefore, the objective of this work is to derive the future residential electricity grid load spatially and temporally resolved to define a decision basis for future grid and market designs. In order to generally predict the future structure, design and operation of residential supply systems and efficiency measures, a Mixed-Integer Linear Program is introduced that minimizes the total annual energy supply cost of a single buildings since the technology adoption is mainly economically driven. The minimization of the greenhouse gas footprint can be added as second objective. The optimization model accounts for the temporal occupant activities, their related device usage, tolerated room temperature levels, limited roof capacities, or different levels of additional insulation. Since the variety of investment and operation options make the model computationally challenging, clustering based times series aggregation techniques are developed and introduced to reduce the complexity of the model. A novel aggregation algorithm based on Mixed-Integer Quadratic Programs is introduced to scale the technology adoption and operation from the single building perspective to a nationwide scope by creating a spatially resolved archetype building stock from Census data and building databases. 200 archetype buildings are concluded to sufficiently represent the diversity of building types in the different municipalities in Germany. These archetype buildings are optimized for the weather years 2010 until 2015 and the results are validated to residential energy consumption ...
Future Grid Load of the Residential Building Sector
The installation and operation of distributed energy resources in the form of photovoltaics, co-generation units, or batteries, and the electrification of the heat supply are seen as promising options to reduce greenhouse gas emissions of residential buildings. Nevertheless, their uptake significantly changes the interaction of the residential building stock with the electricity grid and the centralized supply infrastructure and questions their current design. Therefore, the objective of this work is to derive the future residential electricity grid load spatially and temporally resolved to define a decision basis for future grid and market designs. In order to generally predict the future structure, design and operation of residential supply systems and efficiency measures, a Mixed-Integer Linear Program is introduced that minimizes the total annual energy supply cost of a single buildings since the technology adoption is mainly economically driven. The minimization of the greenhouse gas footprint can be added as second objective. The optimization model accounts for the temporal occupant activities, their related device usage, tolerated room temperature levels, limited roof capacities, or different levels of additional insulation. Since the variety of investment and operation options make the model computationally challenging, clustering based times series aggregation techniques are developed and introduced to reduce the complexity of the model. A novel aggregation algorithm based on Mixed-Integer Quadratic Programs is introduced to scale the technology adoption and operation from the single building perspective to a nationwide scope by creating a spatially resolved archetype building stock from Census data and building databases. 200 archetype buildings are concluded to sufficiently represent the diversity of building types in the different municipalities in Germany. These archetype buildings are optimized for the weather years 2010 until 2015 and the results are validated to residential energy consumption ...
Future Grid Load of the Residential Building Sector
Kotzur, Leander (author)
2018-01-01
Jülich : Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag, Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment 442, xxi, 213 S. (2018). = RWTH Aachen, Diss., 2018
Theses
Electronic Resource
English
DDC:
690
Future grid load of the residential building sector
UB Braunschweig | 2018
|Future grid load of the residential building sector
TIBKAT | 2018
|Customer baseline load models for residential sector in a smart-grid environment
BASE | 2016
|Residential Sector Brings Green Building Home
British Library Online Contents | 2007
Sustainability options for China's residential building sector
British Library Online Contents | 2001
|