A platform for research: civil engineering, architecture and urbanism
Effects of energy retrofits on Indoor Air Quality in multifamily buildings
Abstract We assessed 45 multifamily buildings (240 apartments) from Finland and 20 (96 apartments) from Lithuania, out of which 37 buildings in Finland and 15 buildings in Lithuania underwent energy retrofits. Building characteristics, retrofit activities, and energy consumption data were collected, and Indoor Air Quality (IAQ) parameters, including carbon monoxide (CO), nitrogen dioxide (NO2), formaldehyde (CH2O), selected volatile organic compounds (benzene, toluene, ethylbenzene, and xylenes (BTEX), radon, and microbial content in settled dust were measured before and after the retrofits. After the retrofits, heating energy consumption decreased by an average of 24% and 49% in Finnish and Lithuanian buildings, respectively. After the retrofits of Finnish buildings, there was a significant increase in BTEX concentrations (estimated mean increase of 2.5 µg/m3), whereas significant reductions were seen in fungal (0.6‐log reduction in cells/m2/d) and bacterial (0.6‐log reduction in gram‐positive and 0.9‐log reduction in gram‐negative bacterial cells/m2/d) concentrations. In Lithuanian buildings, radon concentrations were significantly increased (estimated mean increase of 13.8 Bq/m3) after the retrofits. Mechanical ventilation was associated with significantly lower CH2O concentrations in Finnish buildings. The results and recommendations presented in this paper can inform building retrofit studies and other programs and policies aimed to improve indoor environment and health. ; Post-print / Final draft
Effects of energy retrofits on Indoor Air Quality in multifamily buildings
Abstract We assessed 45 multifamily buildings (240 apartments) from Finland and 20 (96 apartments) from Lithuania, out of which 37 buildings in Finland and 15 buildings in Lithuania underwent energy retrofits. Building characteristics, retrofit activities, and energy consumption data were collected, and Indoor Air Quality (IAQ) parameters, including carbon monoxide (CO), nitrogen dioxide (NO2), formaldehyde (CH2O), selected volatile organic compounds (benzene, toluene, ethylbenzene, and xylenes (BTEX), radon, and microbial content in settled dust were measured before and after the retrofits. After the retrofits, heating energy consumption decreased by an average of 24% and 49% in Finnish and Lithuanian buildings, respectively. After the retrofits of Finnish buildings, there was a significant increase in BTEX concentrations (estimated mean increase of 2.5 µg/m3), whereas significant reductions were seen in fungal (0.6‐log reduction in cells/m2/d) and bacterial (0.6‐log reduction in gram‐positive and 0.9‐log reduction in gram‐negative bacterial cells/m2/d) concentrations. In Lithuanian buildings, radon concentrations were significantly increased (estimated mean increase of 13.8 Bq/m3) after the retrofits. Mechanical ventilation was associated with significantly lower CH2O concentrations in Finnish buildings. The results and recommendations presented in this paper can inform building retrofit studies and other programs and policies aimed to improve indoor environment and health. ; Post-print / Final draft
Effects of energy retrofits on Indoor Air Quality in multifamily buildings
Du, Liuliu (author) / Leivo, Virpi (author) / Prasauskas, Tadas (author) / Täubel, Martin (author) / Martuzevicius, Dainius (author) / Haverinen‐Shaughnessy, Ulla (author) / Lappeenrannan-Lahden teknillinen yliopisto LUT / Lappeenranta-Lahti University of Technology LUT / fi=School of Energy Systems|en=School of Energy Systems|
2019-03-28
URN:NBN:fi-fe202002034291
Article (Journal)
Electronic Resource
English
The Challenge of Vapor-Diaphragm Thermostat Retrofits in Existing Multifamily Buildings
British Library Conference Proceedings | 2008
|Modeling the resiliency of energy‐efficient retrofits in low‐income multifamily housing
Wiley | 2018
|Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia
Online Contents | 2017
|