A platform for research: civil engineering, architecture and urbanism
Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works ; Microgrids are energy systems that aggregate distributed energy resources, loads, and power electronics devices in a stable and balanced way. They rely on energy management systems to schedule optimally the distributed energy resources. Conventionally, many scheduling problems have been solved by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data. The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory, Aalborg University. ; Peer Reviewed ; Postprint (author's final draft)
Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works ; Microgrids are energy systems that aggregate distributed energy resources, loads, and power electronics devices in a stable and balanced way. They rely on energy management systems to schedule optimally the distributed energy resources. Conventionally, many scheduling problems have been solved by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data. The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory, Aalborg University. ; Peer Reviewed ; Postprint (author's final draft)
Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification
Luna, Adriana C. (author) / Díaz, Nelson L. (author) / Graells Sobré, Moisès (author) / Vasquez, Juan C. (author) / Guerrero, Josep M. (author) / Universitat Politècnica de Catalunya. Departament d'Enginyeria Química / Universitat Politècnica de Catalunya. CEPIMA - Center for Process and Environment Engineering
2017-04-01
Article (Journal)
Electronic Resource
English
DDC:
690
Nonlinear and Mixed Integer Linear Programming
Springer Verlag | 2012
|Irrigation Scheduling Using Mixed-Integer Linear Programming
British Library Online Contents | 2001
|Mixed integer linear programming and building retrofits
Online Contents | 1998
|