A platform for research: civil engineering, architecture and urbanism
Elastic wave propagation of ultrasound in bituminous road surfaces - simulations and measurements
Maintenance costs of road infrastructure are increasing steadily. The main cause of this is the nearly exponential increase of traffic during the last decades. Adverse environmental impacts on infrastructure get more and more important as well. Therefore, it is important to determine how limited financial resources can be directed with an optimum pay-out. Often a decision has to be made whether existing structures have to be rebuilt or repaired based on the condition of the structures. The present study takes first steps towards the usage of low-frequency ultrasound as a tool to evaluate the road condition. The overall aim is to derive a prediction model for future road conditions. In order to better understand and interpret recorded wave fields simulations of elastic wave propagation in layered and scattering road models have been performed. The study combined investigations in the laboratory with field measurements. In a series of extensive laboratory tests with different asphalt mixtures characteristic wave properties have been derived. Travel time (resp. velocity) as important material parameter has been investigated for different wave types, different centre frequencies and at various temperatures. An investigation of the directivity of wave radiation in the heterogeneous asphalt bodies led to an estimate of the related disturbing influences. Based on the laboratory results field measurements were performed on a real road and the records were processed to identify layers, propagation speeds and attenuation. The results were verified by a series of simulations.
Elastic wave propagation of ultrasound in bituminous road surfaces - simulations and measurements
Maintenance costs of road infrastructure are increasing steadily. The main cause of this is the nearly exponential increase of traffic during the last decades. Adverse environmental impacts on infrastructure get more and more important as well. Therefore, it is important to determine how limited financial resources can be directed with an optimum pay-out. Often a decision has to be made whether existing structures have to be rebuilt or repaired based on the condition of the structures. The present study takes first steps towards the usage of low-frequency ultrasound as a tool to evaluate the road condition. The overall aim is to derive a prediction model for future road conditions. In order to better understand and interpret recorded wave fields simulations of elastic wave propagation in layered and scattering road models have been performed. The study combined investigations in the laboratory with field measurements. In a series of extensive laboratory tests with different asphalt mixtures characteristic wave properties have been derived. Travel time (resp. velocity) as important material parameter has been investigated for different wave types, different centre frequencies and at various temperatures. An investigation of the directivity of wave radiation in the heterogeneous asphalt bodies led to an estimate of the related disturbing influences. Based on the laboratory results field measurements were performed on a real road and the records were processed to identify layers, propagation speeds and attenuation. The results were verified by a series of simulations.
Elastic wave propagation of ultrasound in bituminous road surfaces - simulations and measurements
Maack, Stefan (author) / Kneib, G. (author)
2015-01-01
Article (Journal)
Electronic Resource
English
Low-cost bituminous road surfaces
Engineering Index Backfile | 1933
|Low cost bituminous road surfaces
Engineering Index Backfile | 1931
|Low-cost bituminous road surfaces
Engineering Index Backfile | 1933
|Loam on bituminous road surfaces
Engineering Index Backfile | 1955
|Bituminous surfaces on concrete road bases
Engineering Index Backfile | 1956
|